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1 Introduction

This report describes work to formally specify the requirements and design of a processor interface unit

(PIU), a single-chip subsystem providing memory-interface, bus-interface, and additional support services

for a commercial microprocessor within a fault-tolerant computer system. This system, the Fault-Tolerant

Embedded Processor (FTEP), is targeted towards applications in avionics and space requiring extremely

high levels of mission reliability, extended maintenance-free operation, or both. Since the need for high-

quality design assurance in such systems is an undisputed fact, the continued development and application

of formal methods is vital as these systems see increasing use in modern society.

The work described in this report represents part of our early progress in developing a provably correct

fault-tolerant computing platform for application to real commercial, military, and spaceborne systems. It

thus represents a transfer of formal modeling and verification methods from academic settings into 'real-

world' hardware applications. The test case for our initial attempt at this - the PIU - has turned out to be a

good choice in that it exploits recent academic research developed, in part, under this contract. It has also

helped to focus new research towards the important problems affecting real-world hardware modeling and
verification.

This report is one of two describing the results of Task 10 of a multi-year NASA contract. The other

report, which we will sometimes refer to as the 'Verification Report,' describes work to formally verify the

PIU design and requirements [Fur93a]. Two additional reports contain the actual HOL listings of the formal

specification and verification [Fur93b] [Fur93c]. All specification and verification work was performed

using the HOL theorem-proving system from the University of Cambridge IGor88].

The research focus of Task 10 was on abstraction. One of the major accomplishments of this work is a

new approach for modeling PIU requirements, and the successful specification and verification of a non-

trivial subset of these requirements using this model. The model was also used to specify and verify the PIU

design (or implementation).

A secondary emphasis of the Task 10 work was composition; an issue that gained in importance as this

work progressed. We have identified an approach to achieve secure composition of PIU ports, as well as the

PIU itself, at high levels of abstraction.

This report is divided into six sections following this introduction. Section 2 explains the problems asso-

ciated with PIU requirements modeling and suggests approaches to solve these problems. Section 3

describes our development of formal models to address the specification and verification needs of the PIU.

Section 4 describes the PIU design specification. Section 5 provides a detailed description of one of the PIU

subsystems (the P_Port, see below) to support the discussions of Section 6, where the PIU requirements

specification is described. Section 7 presents the conclusions of this specification task. A brief description

of the HOL theorem-proving system is provided in Appendix A.

Before leaving this section, we present an informal description of the PIU, including both its structure

and an overview of its behavior. Following this we introduce the specification hierarchy developed for the
PIU.

1.1 Informal PIU Description

The PIU is a single-chip subsystem providing memory-interface, bus-interface, and additional support

services within the Processor-Memory Module (PMM) of the FTEP system. The PIU's position within the

PMM structure is shown in Figure 1.1. A PMM, itself a single block within an FTEP Core, interconnects

three internal PMM subsystems: the local processors, the local memory, and the Core Bus (C_Bus) inter-
face.



ThePMMprocessors(CPU0andCPUI)arearrangedinacold-sparingconfigurationto enhancelong-
life operation.Onlyoneprocessorisactiveduringagivenmission.Thechoiceof activeprocessorisdeter-
minedduringinitialization.ThespareprocessorisdisabledbythePIUthroughassertionof theprocessor's
cpu_reset input. For the first implementation of the PMM, described in this report, Intel 80960MC micro-

processors lint89] are used for the local processors. They communicate with the PIU using the L_Bus bus

protocol of the 80960.

Processor programs and data are stored in local electrically-erasable programmable read-only memory

(EEPROM) and static random access memory (SRAM), respectively. Memory accesses are initiated by

either the local processor or an external block acting as C_Bus master. In either case the PIU provides the

memory interface. The features provided by the PIU include memory error correction, memory locking to

implement atomic read-modify-write operations, byte accesses, and block accesses of up to 64 words.

EEPROM and SRAM memory capacity in the first implementation is 1 MB (megabyte) of actual informa-

tion storage each, implemented within seven 256KxS-bit memory chips each. A (7,4) Hamming code pro-

vides single-bit error correction on memory reads.

The PIU also provides processor support features such as timers and interrupt control. Two 64-bit timers

can be set by the processor to provide either timekeeping or watchdog functions. Processor interrupts are

generated within the PIU under two conditions. One condition is a timer time-out; the other is a write oper-

ation to a specially designated PIU register by either the local processor or C_Bus master.

The reset and clock signals shown at the top of Figure 1. l are produced by the Fault-Tolerant Clock Unit

(FTCU) not shown here. The prom_reset signal is sent only to the PIU to allow it greater control over the

local processors. For example, the PIU uses this signal to enter its initialization mode, during which it acti-
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Figure 1.1: Block Diagram of the Processor-Memory Module (PMM).



vates the processor reset signals. All of the PIU input signals produced by the FTCU are synchronized with
those in the PIUs in redundant PMMs of a fault-tolerant FTEP core.

The structure of the PIU itself is shown in Figure 1.2. The Processor Port (P_Port), C_Bus Port

(C_Port), and Memory Port (M_Port) implement the communication protocols for the L_Bus, C_Bus, and

M_Bus, respectively. The M_Port also implements (7,4) Hamming encoding and decoding on writes and

reads, respectively, to the local memory, and the C_Port implements single-bit parity encoding and decoding

for C_Bus transfers.

The Register Port (R_Port) is the fourth, and final, port residing on the PIU's Internal Bus (I_Bus). It

contains a state machine, counters, and various command and status registers used by the local processor to

implement timers and interrupts.

The Start-up Controller (SU_Cont) implements the PMM initialization sequence. After it has concluded

initialization, control is turned over to the other ports with the SU_Cont continuing operation in a back-

ground mode. The SU_Cont is not physically located on the I_Bus; however, for convenience, we will

sometimes refer to it as one of the five PIU ports.

M_Bus

f

piu_clk pmm_reset
cbus_clk
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I Bus> M Port - t,,,
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Figure 1.2: Major Blocks of the Processor Interface Unit (PIU).



Behaviorally,the PIU functionality can be divided into four categories: (1) PMM initialization, (2)

local-processor memory accesses, (3) C_Bus memory accesses, and (4) timers and interrupts.

1.1.1 PMM Initialization

The PIU controls the PMM initialization sequence. After receiving a synchronous pmm_reset signal

from the FTCU, the PIU initiates the testing of the two local processors (or CPUs). Based on the test results,

the PIU selects one of the CPUs to be active for the upcoming mission, while at the same time isolating the

other CPU. During the initialization, the PIU also maintains the inter-PMM synchronization that is initially

established by the FTCUs.

The PIU initiates CPU self-test via the CPU reset signals that it controls. To begin the initialization

sequence, the PIU resets CPU0, which then goes through a two-phase (Intel 80960) testing process of its

own. In the first phase the CPU executes a 47,000-cycle self-test procedure; in the second phase the CPU

reads the first eight words of local memory (via the PIU) and performs a check-sum test. If either of these

tests fail, then the CPU'sfailureO_ pin remains asserted, otherwise it is deasserted.

After the CPU self-test is completed, the CPU executes a software-based test using a program and the

prior-mission fault status stored in local memory. At preselected points in this program the CPU updates

PIU registers in a prespecified manner. At the end of this program, the PIU compares the modified PIU reg-

ister values against their expected values. This acceptance test is the final major test of CPU functionality

during initialization.

At the same time that CPU0 is being tested, the PIU isolates CPU1 by asserting its cpul_reset input.

Once the testing of CPU0 is completed, the roles are reversed. After both CPUs have been tested, the PIU

selects one to be active for the upcoming mission. The selection algorithm makes use of the CPU failure

signal outputs and the acceptance-test results: ifCPU0 is ok then it is selected, otherwise ifCPU1 is ok then
it is selected, otherwise neither one is selected. Once the selection is made, the selected CPU is reset again

and begins normal operation. The PIU isolates the other CPU by keeping its reset active.

An important PIU requirement is to maintain clock-level synchronization between redundant PMMs,

yet accommodate possible nondeterminism within the PMM initialization sequences. Before the PMM ini-

tialization begins, the redundant PMM clocks are synchronized by the FTCUs, and pmm_reset signals are

delivered to the PIUs synchronously across all PMMs. Synchronization is maintained by establishing max-

imum time durations for each phase of the initialization and having each PMM use the entire duration. The

PIUs enforce these phase boundaries and thus guarantee that each PMM leaves its initialization on precisely

the same clock cycle.

1.1.2 CPU Accesses to Memory

The PIU controls CPU reads and writes to the local memory, the internal PIU registers, and global mem-

ory.

1.1.2.1 To Local Memory

The PIU implements error-correction code (ECC) encoding and decoding and supports atomic memory

operations, byte accesses, and 2-, 3-, and 4-word block transfers.

On writes to the local memory, the PIU encodes the 32-bit data words using a single-error-correction

(7,4) Hamming code. The 56-bit encoded words are stored such that each 7-bit word (there are eight of

these) is spread among the seven 256Kx8-bit memory chips. On reads, the decoding process implemented

within the PIU masks all faults affecting one of the seven bits of each code word. Entire memory-chip fail-
tires are thus handled.
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Atomicmemoryaccesses,the'atomicadd'and'atomicmodify'instructionsof theIntel80960instruc-
tionset,aresupportedbythePIU.DuringtheseoperationsthePIUpreventstheC_Busfromgainingaccess
tothelocalmemory.ThePIUusesthelocksignalprovidedbytheCPUduringtheseoperations.

ByteaccessestothelocalmemoryaresupportedbythePIU.Readsareimplementedin astraightfor-
wardway.Writesareimplementedusingaread-modify-writeoperationthatreencodestheentire32-bitdata
word.

Byteaccessesof upto fourwordsarealsosupportedto implementcacherefillingwithintheCPU.

1.1.2.2 To Internal Register File

The PIU supports atomic accesses and 2-, 3-, and 4-word block transfers to and from its internal regis-

ters within the R_Port. Byte accesses are not supported, nor is the data encoded before being stored. "lhble
1.1 shows the R_Port register definitions.

The Interrupt Control Register (ICR) supports memory-mapped interrupts to the local processor. The

register is divided into four fields. The first two contain the interrupt settings and mask bits for the interrupt

intO_, in bits 0 through 7 and 8 through 15, respectively. A logic- 1 in both a set location and the associated

mask location signifies an active interrupt, which if enabled (external to the R_Port) will generate an active

intO_ signal to the processor. Bits 16 through 31 are used in a corresponding way for int3_.

The ICR contents are updated in two different ways. A write to register address 0 implements a logical-

AND operation on the new value and the old register contents, while a write to address 1 implements a log-

ical-OR operation. These two operations implement the resetting and setting of register bits, respectively. A

read to either of these addresses returns the current register value.

The General Control Register (GCR) and Communication Control Register (CCR) provide control bits

to the internal PIU and the C_Bus, respectively. The GCR bits include the start-up software counter enable

(used for the acceptance test discussed earlier), R_Port counter configuration control bits, and parity-error-

latch reset bits. The CCR contains the message header for the next C_Bus transaction. Either of these reg-

isters can be written to or read from by the local processor.

The Status Register (SR) holds status information produced internally to the PIU. This includes start-

up error-detection status, local-memory and C_Bus error-detection status, start-up controller state, and the

last C_Bus slave-status report. This register is read-only.

Register addresses 8 through 11 are used to load new counter values to the 32-bit counters 0 through 3,

respectively. These load values can be read by the local processor using the same addresses. Register

addresses 12 through 15 are read-only locations containing the current value of the four counters.

The four counters are combined to form two 64-bit counters which can be configured in a variety of

ways via control bits in the GCR. The choices include enabled vs. disabled counting, enabled vs. disabled

interrupting on overflow, and reloading vs. count-continuation on overflow. Counters 0 and 1 together sup-
port timer interrupts using the intl interrupt line; counters 2 and 3 use int2.

Table 1.1: R_Port Register Definitions.

Register Address Contents

0 Interrupt Control Register (ICR) reset

1 ICR set

2 General Control Register (GCR)



Table 1.1: R_Port Register Definitions.

Register Address Contents

3 Communication Control Register (CCR)

4 Status Register (SR)

8 Counter 0 in

9 Counter 1 in

10 Counter 2 in

11 Counter 3 in

12 Counter 0 out

13 Counter 1 out

14 Counter 2 out

15 Counter 3 out

1.1.2.3 To the C_Bus

The upper 2 GB (gigabytes) of the CPU address space is reserved for external memory and input/output

(I/O). The PIU routes CPU memory accesses at these addresses to the C_Bus. It implements the C_Bus pro-

tocol, parity encoding and decoding of data, and support for atomic memory operations, byte transfers, and

2-, 3-, and 4-word block transfers.

The PIU implements the C_Bus communication protocol. This includes all arbitration actions and nec-

essary handshaking.
On writes to the CBus the PIU encodes each byte of data using a single-error-detection parity code.

Data arriving over the C_Bus is likewise decoded.

Atomic memory operations are supported by the PIU. Once the PIU acquires the C_Bus it doesn't relin-

quish it until the atomic operation is completed. The PIU again makes use of the CPU lock signal to know

when to do this.

Byte transfers and 2-, 3-, and 4-word transfers are handled in a straightforward manner.

1.1.3 C_Bus Accesses to Memory

The PIU controls C_Bus reads and writes to local memory and the PIU register file. All of the support

features described earlier for the CPU-initiated transfers are supported here as well. The C_Bus (i.e., the

processing unit of an external block) arbitrates with the CPU for local memory accesses. The PIU holds off

the local CPU using the CPU hold_ input signal. The PIU supports block transfers as large as 64 words over

the C_Bus.

1.1.4 Timers and Interrupts

As explained above, the PIU contains two 64-bit counters and an interrupt control register. The counters

can be used to implement timed interrupts as well as a real-time clock. The timed interrupts can be pro-

grammed to provide either a single-shot interrupt or repeated, periodic interrupts.

6



Theinterruptregisteris a memory-mappedregisterusedto implement16possibleinterrupts.These
interruptscanbeinitiatedbyeithertheactivelocalprocessororanexternalC_Busmaster.

1.2 Specification Overview

Figure 1.3 shows one of the specification hierarchies developed for the PIU. As explained in Section 2,

four independent specification hierarchies are being developed for the PIU---one for each class of behavior

described in the previous section. Figure 1.3 shows the hierarchy for the behavior described in Section

1.1.2----CPU accesses to memory.

In constructing this hierarchy, emphasis was placed on maintaining compatibility with existing formal

specification methods. The resulting hierarchy reflects this emphasis, particularly in the lower levels where

many of the techniques described in [Win90a] are used. The transaction levels required new techniques to
be developed however.

Consistent with established hierarchical specification methods, the levels in the hierarchy of Figure 1.3

are abstractions of the levels below them. Four types of abstraction are used here. Temporal abstraction

relates time at a particular level to the time at lower levels; each unit of time at the higher level corresponds

to multiple time units at the lower level. Data abstraction relates the states of two levels, with the higher

level state usually being a function (typically a subset) of the state at the lower level. In behavioral abstrac-

tion, a structural description at the lower level, defined using the physical interconnection of components or

subsystems, is replaced by a purely behavioral description at the higher level. Structural abstraction com-

bines subsystems defined at one level to form a higher level comprising their composition.

I I

_E _ "_ _" iE _ "_ _ "_

P-Port M-Port R-Port C-Port SU-Cont I-Bus

PIU Tram-Level Behavior

PIU Tram.Level Structure

(Port Tram-Level Behavior)

Clock-Tram Abstraction
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Figure 1.3: PIU Specification Hierarchy for the P Process.



Port Gate-Level Structure. At the bottom of the PIU specification hierarchy is the gate-level descrip-

tion. This is a structural description derived from the lowest-level detailed design developed by the PIU

design team. The chip layout is obtained directly from this level using silicon compilation techniques that

are not within the scope of this task. As the bottom-most level in our hierarchy, the gate-level models are

assumed to correctly model the behavior of the physical devices, as indicated by their 'ground' designations

in the figure. Components at the gate level include individual logic gates, latches, counters, and finite-state

machines. This level is comparable to the electronic block model (EBM) level of [Win90a].

Port Clock-Level Behavior. The clock-level behavioral description for each individual port, and the

I_Bus, is an interpreter model with a transition time interval of one clock period. (An interpreter is a finite-

state machine with behavior partitioned into a set of instructions). Only a single instruction is defined for

each port of the PIU however, specifying the state change and outputs of the port occurring during its exe-

cution. This level is comparable to the microinstruction level of [Win90a] and elsewhere except that only a

subset of the chip design (i.e., a port) is described here rather than the entire chip.

For each of the five ports, the clock-level behavior is implemented by the corresponding gate-level

behavior shown below it in the figure--the I_Bus behavior is assumed. Other than behavioral abstraction,

there is no other abstraction between this level and the underlying gate level.

PIU Clock-Level Structure. The enclosing box around the port clock-level models represents the

clock-level structure for the entire PIU. As a structure, this representation specifies a set of constituent com-

ponents and their interconnections---the components are the actual clock-level models just described. The
interconnections are defined using the established method of forming a logical conjunction of the individual

port descriptions, using existential quantification for the signals internal to the composition (e.g., [Gor86]).

Other than structural abstraction, there is no other abstraction between this description and its underlying

models.

Port Transaction-Level Behavior. The transaction-level behavioral description for the ports uses a

time interval corresponding to a local processor-generated transaction. A transaction here corresponds to the

transactions of the Intel 80960 microprocessor L_Bus protocol [Int89]. A single transaction can represent

many clock cycles of behavior, with its time duration being nondeterministic, although bounded.

The jump in abstraction between the transaction level and the implementing clock level is very large

and is defined within a number of abstraction predicates shown in the figure. These predicates define the

temporal and data abstraction linking the state, inputs, and outputs of the corresponding models in each

level. Abstraction is by nature an asserted (rather than proved) property, and this fact is indicated by the

'ground' designation assigned to each of the abstraction models in the figure.
PIU Transaction-Level Structure. The PIU transaction-level structure is represented by the bounding

box around the port behaviors just described. This level is a structural composition of the five individual

transaction-level port specifications. The port composition is again based on the established method of form-

ing a logical conjunction of the individual port descriptions.

PIU Transaction-Level Behavior. The PIU transaction-style behavioral description is the top-most

level in the PIU hierarchy, providing a concise and easy-to-understand definition of PIU behavior. The trans-

action level specifies the PIU requirements for memory-access transactions initiated by the local processor.

Other than structural abstraction, there is no other abstraction between this description and the PIU transac-

tion-level structure.



2 PIU Requirements Modeling- Issues and Approaches

Current hardware modeling practices fail to address some special problems presented by the PIU. One

distinction between the PIU modeling problem and most of the earlier work is that this prior work dealt with

standalone systems, whereas the PIU is an embedded subsystem. For example, 'microprocessor' verifica-

tions to date have not been of microprocessors, per se, but instead complete microcomputer systems --

microprocessor plus memory (e.g., [Hun87][Joy89][Win90a]). These systems were modeled as self-

enclosed state-transition systems, containing no outputs. However, because of the PIU's role as an interface

subsystem its output behavior is a prominent part of its overall behavior, and thus cannot be so easily disre-

garded.

Previous work to model embedded subsystems (e.g., [Sch91]) has focused on formalizing a process

algebra in HOL to permit component compositions at a very abstract level. While this is clearly an important

capability for a modeling approach, the work reported to date has not demonstrated how the abstract level

can be verified with respect to its implementation.

Given the present state-of-the-art it is worth investigating the two fundamentally different approaches

represented above. In the standalone-system approach adopted by the microprocessor verification crowd,

the abstract subsystem behavior is modeled as an output-free state-transition system. This approach is

described in Figure 2.1. Here our subsystem under consideration, the PIU, is composed with its environment

at a low level in the hierarchy--the clock level. After composition the resulting behavior is abstracted to the

transaction level. The abstract 'PIU behavior' (in the shaded box) is thus described, not only by its own

change of state, but also by the effect it has on its environment. This is analogous to the lumping of system

memory into the microprocessor specifications mentioned above.
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PIU-Environment Clock-Level Behavior

PIU-Environment Clock-Level Structure

PIU Clock Level 1_
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Figure 2.1: Example PIU Specification Hierarchy Using Clock-Level Composition.



Figure 2.2 describes a competing approach where abstraction is performed within the subsystems them-

selves, before composition. The abstract PIU specification in this case describes the PIU's behavior with

respect to its outputs in addition to its internal state.

PIU-Environment Transaction-Level Behavior

Abstraction

PIU-Enviromnent Transaction-Level Structure

/_ Abstraction

PIU Clock Level

Composition

Environment Trans Level [

Z," ., ..\

Abstraction

Environment Clock Level

Figure 2.2: Example PIU Specification Hierarchy Using Transaction-Level Composition.

One distinction between the two approaches concerns the fidelity and conciseness of the models repre-

senting the most abstract behavior of the PIU. In the standalone case, the PIU transaction-level model inter-

mixes the PIU and its environment, thereby diluting the focus on the PIU behavior of interest. In contrast,

the embedded-subsystem approach of Figure 2.2 provides an abstract model of PIU behavior in isolation.

This separation of PIU behavior and environment permits a finer focus on the PIU itself; the definition of

the PIU's effect on its environment is provided separately.

A more fundamental advantage of the embedded-subsystem approach is the greater degree of verifica-

tion reuse it provides. Performing abstraction within subsystems before composing them results in the most

difficult verification work being contained in the abstraction rather than in the composition. The fortunate

aspect of this is that the verification of an abstraction need only be performed once; it is reused every time

the subsystem is composed with a new environment. And these compositions become much easier as the
level of abstraction is raised.

In contrast, the standalone-system approach presents a much more difficult composition verification

since more implementation detail must be handled there. This scenario has a disadvantage over the previous

approach in that these types of verifications will generally need to be repeated every time the subsytem is

incorporated into a new system configuration.

Because of these advantages, an embedded-subsystem approach was adopted for the PIU specification.

This choice has not come without its own costs however. The following subsection describes three problems

encountered in modeling the PIU, at least one of which may be attributed to our decision to specify the PIU
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asanindividualsubsystemratherthanin thecontextof some all-encompassing system model. Following

this, Section 2.2 briefly overviews our solution to the multiple-process problem that is explained in the next

subsection. Sections 2.3 and 2.4 describe our general approaches to handling abstraction and composition,

respectively.

2.1 Problem Descriptions

This section describes problems affecting the modeling of PIU requirements. The following three sub-

sections introduce and explain the multiple-process problem, the shared-state problem, and the many-to-

many problem.

2.1.1 Multiple-Process Problem

Modeling the PIU is made difficult by the large number of independent tasks it performs. As explained

in Section I, the PIU:

(a) handles memory accesses initiated by the local processor;

(b) handles memory accesses sourced by the C_Bus;

(c) provides timekeeping and interrupt support for the local processor; and

(d) performs PMM initialization upon system reset.

All of these activities proceed in parallel during system operation (the initialization process can be thought

of as continually executing a 'No Reset' command during normal operations). Using a standard modeling

approach based on finite-state machines (FSMs) we might be tempted to lump these activities into a single

machine description. However, this would result in a virtually incomprehensible description of PIU require-

ments.

Behavioral decomposition is the normal means by which humans come to understand the complex

behavior of computer systems. Microprocessor instruction sets are a good example of this--for example

understanding register-to-register addition is much simpler this way than would be examining an FSM next-

state function for the entire microprocessor. Likewise, understanding the PIU behavior is made easier if the

four independent activities can be represented separately.

Although standard hardware modeling approaches based on FSMs don't directly accommodate the

independent behaviors of the PIU, a straightforward extension described in Section 2.2 is sufficient.

2.1.2 Shared-State Problem

The shared-state problem was described in earlier work under this contract at UC-Davis (e.g., [Win90a]

[Sch91]). The problem can arise in situations where two or more independently-modeled processes have

access to a common memory resource. The FTEP PMM includes two such resources: the PMM local mem-

ory and the PIU register file.

The problem can be easily understood from the point of view of the local-CPU process. For example, a

CPU data load assembly-language instruction is normally modeled similar to the following:

CPU_Reg [Rd] (t + 1) = LMem [Adr] (t)

This states that the new value for a destination register within the CPU is equal to the old value of a targeted

memory location.
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Theproblemhereis thatthestraightforwardapproachto verifyingthisbehaviorfailsfor thePIU.For
example,if theC_BusisaccessinglocalmemoryduringthetimeaCPUmemory-readrequestarrivesatthe
PIU,thentheCPUrequestmustwait.If duringthistimetheC_Busmodifiesthevalueatthelocationto be
readbytheCPU,thenthebehaviordescribedbytheaboverelationcannotbeprovento hold---thevalue
readintothedestinationregister(CPO_Reg[Rd](t+l)) can be different from the memory value at the time of

the read request (LMem[Adr](t)).

2.1.2.1 Disallow Shared State

The simplest approach to solve this problem is to make the assumption that these types of simultaneous

memory accesses can't occur. This is not completely unreasonable since the nondeterministic behavior

resulting from these types of accesses is incompatible with the demands of some real-time, safety-critical

applications targeted by the PIU. Not all potential applications are of this type, however, and in some sce-

narios it may be desirable to allow simultaneous accesses; therefore, we rule out this approach.

2.1.2.2 Use Generic Operators

Another approach is to consider the above specification to be in error. Rather than stating that the des-

tination register is updated with a specific value as above, we could instead state simply that a memory read

operation is performed at time t, at location Adr. We could model the operation using a generic operator

MEM_READ; for example:

I CPU_Reg [Rd] (t + 1) = MEM_READ (LMem, Adr, t) I

We could then interpret the meaning of this MEM_READ operator as we desire--a read is requested at

abstract time t, and the value returned to the CPU is the value read from the specified memory location some-

time in the interval (t, t+l), as dictated by the memory arbitration protocol.

This approach handles updates to the sharexl memory in a comparable way. For CPU writes, we might

specify the new state values using a generic operator MEM_WRITE:

LMem [Adr] (t + 1) = MEM_WRITE (LMem, Adr, (CPU_Reg [Rs] (t)), t)

Since FSM-based specification approaches require a value to be specified for every state variable for all

times, an operator is necessary to model the 'unchanged' state value as well. In [Win90a] the operator

TRANS, a transformation function, was introduced for this purpose.

As pointed out in both [Win9Oa] and [Sch91 ], a disadvantage of this approach is that it requires a trans-

formation function to be defined at multiple levels in the specification hierarchy, which introduces additional

proof obligations. Although this may be a serious concern, it is not clear just how much of this extra work

is avoidable, as opposed to being a reasonable solution to an inherently complex problem.

While the generic-operator approach has been used in several previous efforts, we hesitate to use it for

the PIU specification because the interrupt and timekeeping behavior of the PIU is determined by the spe-

cific values contained in the PIU registers (Section 1). Since generic operators do not work with specific

values, it doesn't appear that they can model this behavior adequately.

2.1.2.3 Use Interval Abstraction

Another way to look at this problem is that the specification itself is correct, but that our notion of when

the time t occurs needs to be revised. Rather than associating t with the concrete-level time that the CPU
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readrequestarrivesatthePIU,wecouldinsteadassociateit withthetimethattheCPUgains ownership of

the memory. If t is viewed this way, then the PIU implementation could be proven to satisfy the data-load

specification shown above.

A significant disadvantage of this approach is the complex abstraction relationship necessary to relate

the PIU requirements and design this way. This would complicate both the specification and verification of
the PIU.

This fine-grained (interval) abstraction is the approach we have adopted for the PIU. It provides the

highest quality solution among the three approaches just described, in that it permits the greatest flexibility

in PIU modeling choices. It can accommodate generic operators as well. In addition, it is the only way that

we know of to solve the problem described in the next section.

2.1.3 Many-to-Many Problem

The PIU handles bus transactions sourced by both the local processor and external processors (via the

C_Bus). For either of these sources a single transaction can involve the transfer of a block of data containing

as many as four words. Such transfers are implemented as a sequence of data movements over a fixed set of

signal wires. In order to satisfy one of our modeling objectives, to use a notation familiar to the hardware

design community (i.e., FSMs), we are left with a choice of either representing behavior at a level of abstrac-

tion corresponding to a single-word data transfer or else finding a new data representation. The first choice

results in a specification level that we call the microtransaction level. We believe that this level is too low

to act as a requirements level given the option of the second choice.

Our preferred modeling approach is to define a new data structure for representing transaction-level sig-

nals. This type of structure, which we call apacket, is described in Section 2.3. Here we only point out how

this choice is related to the solution for the shared-state problem that was described in the last section.

Within a packet is a 4-word array holding the (up to) four data words of a transaction. In order to prove

that a specified output packet is a correct abstraction of the concrete-level outputs, some way must be found

to relate this packet data array with the sequence of individual data signal outputs. We know of no approach

that can do this other than the interval abstraction approach mentioned above (and described in Section 2.3).

2.2 Multiple Processes

Standard hardware specification methods describe behavior using the next-state and output functions of

a single FSM. Behavioral decomposition is achieved by introducing an instruction decoding function, which

serves to define an instruction set for the system being modeled. An FSM defined this way is called an inter-

preter (e.g., [Win90a]).

A single interpreter model for the entire PIU is a poor choice for representing PIU requirements because

of the high degree of independence between the four classes of PIU behavior described in Section 1. A sin-

gle interpreter would result in a large number of instructions, each of which would be relatively complex,

since all four classes of behavior would need to be included in each instruction definition. For example, even

if only two instructions were defined for each class, the total number of PIU instructions could be as high

as 16 (24). A typical instruction might designate, for instance:

(a) CPU-initiated read of local memory;

(b) C_Bus idle;

(c) interrupt IntO_ activated, the others inactive; and

(d) no resets received by the SU_Cont, nor transmitted to the other ports.

13



A betterapproachis todefineaninterpreterforeachclassof behavior.Thisnotonlyavoidsamultiplicative
growthin instructionsetsize,butalsoservestorestrictthescopeofeachinstructionto itsindividualclass.

Figure2.3approximatesourviewof therelationshipbetweenthefourbehaviorclasses(orprocesses)
andthespecificationmodelsimplementingthem.TheP process describes the behavior associated with the

PIU P_Port--memory transactions initiated by the local processor. The darkened boxes in the figure indicate

those models participating in the P process specification. These are similar to the set of models shown in the

P-process specification hierarchy in Figure 1.3. The processes C, R, and S represent the C_Bus-initiated

transactions, register timers and interrupts, and startup behavior, respectively.

PIU Trans-Level

(behavior)

PIU Trans-Level
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Port Trans-Level

(behavior)

Port Clock-Level

(behavior)
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Figure 2.3: Approximate Implementation Relationships Among PIU Specification Models.

2.3 Abstraction

Developing an approach to abstraction suitable for the PIU requirements was probably the biggest

research problem within this Task 10 work. In this section we describe our general approach to transaction-

level abslraction and compare it to the approach traditionally used within the formal-methods community.

In this and subsequent sections the benefits of our approach to abstraction are seen to be as follows:

(a) A concise PIU requirements specification in a (FSM) notation familiar to design engineers.

(b) Solutions to the shared-state and many-to-many problems described in Section 2.1.

(c) Support for secure transaction-level composition.

The traditional approach to abstraction is described by Figure 2.4. In this diagram an abstract machine,

represented by a next-state function NS and state S, is implemented by a concrete machine, represented by

a next state function NS' and state s'. Each unit of coarse-grained abstract time t corresponds to multiple

units of fine-grained concrete time t'. Temporal abstraction relates the two time sequences. This is imple-
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mentedbyapredicatedefinedovertheconcretestate(and perhaps inputs not shown here) that defines the

time boundaries of the abstract operations. A typical example of such a predicate is one that returns true

whenever a microcode-level program counter reaches the address zero, designating the completion of an

assembly-language operation of a microprocessor.

Abstract State-Transition Machine

HS

s(t) =
Abs(S'(t'))

NS' NS' NS'

t' t'+l' t'+2'

t+l

S(t+l) =

Abs(S'(t'+n'))

NS'

oee

Concrete State-Transition Machine

t'+n'

Figure 2.4: Traditional Approach to Temporal and Data Abstraction.

Data abstraction relates the abstract state S and the concrete state S'. Although the generic interpreter

model described in Section 3 permits an arbitrary function to be used to provide this link, usually the abstract

state is simply a subset of the concrete state.

The important point to note about this diagram is that the abstract and concrete states are related only at

the boundaries of the abstract-level operations. This is perfectly sufficient for modeling state-transition sys-

tems that, lacking outputs, are completely characterized this way. It is quite clear, however, that if outputs

are produced at intermediate points within the abstract operation then this approach to abstraction will not

be adequate.

2.3.1 Interval Abstraction to Address the Shared-State Problem

Figure 2.5 shows an approach to the shared-state problem that exploits interval abstraction. In this case,

one concrete state variable (P_R_') defined at the beginning of the transaction, at concrete time tp', is related

to its associated abstract variable (P_R_), at abstract time t. Another concrete state variable, PlU_Reg', is

related to its associated abstract state variable PlU_Reg. The key difference here is that the temporal abstrac-

tion relates an intermediate point of concrete time, ti', to the abstract time t.

It is clear that this type of flexible abstraction can effectively address the shared-state problem. For

example, iftp' represents the time that a transaction request is received from the local processor at the P_-

Port of the PIU, and ifti' represents the time that the P_Port actually accesses the R_Port register file, then

the data load instruction specification shown in Section 2.1.2 can be verified. The key to achieving this is

the association of the abstract PIU register state at time t with the concrete state at concrete time tr, the point

at which the local processor actually owns the register file.
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Figure 2.5: Interval Abstraction to Address the Shared-State Problem.

2.3.2 Interval Abstraction to Address the Many-to-Many Problem

Throughout this work it has been our goal to produce specification models using formalisms familiar to

the hardware design community. With this objective in mind it is quite natural to consider an approach based

on standard finite-state machines. Although other formalisms have attractive features, particularly certain

process algebras, FSMs have long been used in formal models and, since they are known to be composable,

they offer many of the same advantages as more exotic approaches.

However, because FSMs are limited to accepting a single set of inputs duff nga given cycle, some means

of aggregating sequentially arriving values must be developed to permit their use in transaction-level mod-

eling. The same is true for FSM outputs. Our approach to handle this is to group all relevant clock-level

inputs and outputs into transaction packets. A packet is a transaction-level entity containing information

fields similar to those described in the example of Table 2.1, which is actually used for local-processor-

sourced packets (in Section 6).

Table 2.1: Example Packet Format (for Transactions Initiated by the Local Processor).

Field Type

_e {WriteLM, WritePIU, WriteCB, ReadLM, ReadPIU, ReadCB, Illegal}

Address array [29:0] of bool

Data array [3:0] [31:0] of bool

Block Size array [ 1:0] of bool

Byte Enable array [3:0] [3:0] of bool

Lock bool
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The opcode field of the packet defines the type of transaction being executed. For example, the first three

listed denote a local-memory write, a PIU-register write, and a C_Bus write, respectively. The opcode field

captures within it not only the memory-target information evident from the opcode names, but also an asser-

tion that the transmitting subsystem is obeying the relevant communication protocol. The opcode field thus

abstracts the control signal (e.g., handshaking) behavior of the clock level.

The address field contains the address of the first memory location being accessed by the transaction.

Many commercial microprocessors use word addressing, necessitating only 30 bits.

The data field contains a block of up to four 32-bit words.

The block size field defines the number of data words being transferred.

The byte enable field defines which particular bytes of the data words are being changed.

The lock field indicates whether or not the transaction is part of an atomic read-modify-write operation.

These field definitions are applicable for a transaction packet sourced by the local processor. Other types

of packets also exist, which have different field definitions or even fewer fields. For example, packets trav-

eling between the PIU and the PMM local memory contain four address words rather than the one shown

above. Also, packets sourced by transaction slaves require only an opcode and data field.

Transaction-level behavior can be visualized in terms of packet transmissions between the ports of the

PIU, and between the the PIU and its external environment. Figure 2.6 illustrates this for an example trans-

action initiated by the local processor. As seen in the figure, the processor transmits a packet with opcode

ReAdI.M to the PIU P_Port, receiving a packet with opcode Fleat_/in return. Although not evident from the

figure, the FlendI.Mpacket contains all of the fields shown in Table 2.1. The Fleady packet, on the other hand,

contains only the opcode and data fields. The I:lea_ opcode represents the P_Port's implementation of the

slave portion of the processor's L_Bus protocol. The Data field holds the memory-read data being trans-

ferred from the PIU I_Bus to the local processor. In the ideal FSM modeling approach used here, the com-

plete circuit beginning with local-processor packet transmission to its receiving the Fleady packet is

accomplished within a single transaction-level cycle.

Local
Processo

Figure 2.6: Example Packet Flow Between Transaction-Level Entities.
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WithinthePIU,theP_Portprocessesthepacketit receivesfromthelocalprocessorandtransmitsacor-
respondingR_dLM packet to the three other ports residing on the I_Bus. In response, the R_Port and

C_Port, since they are not being addressed, reply with opcodes of Idle. This opcode corresponds to the ports

keeping their outputs in a high-impedance state, effectively isolating themselves from the I_Bus. The

M_Port, since it is being addressed, responds with a Ready opcode plus data, representing its implementa-

tion of the I_Bus slave protocol.

At the local-memory interface, the M_Port transmits a ReadLM packet over the M_Bus and receives a

Ready packet from the memory in return. Here, the ReadLM packet contains the same number of addresses

as data words since it is the M_Port that maintains an address counter for incrementing the memory address

before each subsequent transfer.

It is worthwhile to point out here that this packet approach provides a convenient way to describe the

operating assumptions that each port places on its external environment. This is implemented in the instruc-

tion decoding process within each port. For example, the P_Port would execute a 'local-memory-read'

instruction only if it receives a ReadLM packet from the local processor and a Ready packet from the l_Bus.

This is comparable to the way a microprocessor decides to execute a 'register-to-register-add' instruction,

for example, except that here the decoding function makes use of system inputs in addition to state. For both

the PIU and microprocessor cases, these instruction selection criteria, when mapped down to the concrete-

level implementation, are essential for establishing the preconditions necessary to achieve an implementa-

tion correctness proof.

It is clear that the standard approach to hardware abstraction, described by Figure 2.4, is inadequate for

our packet approach to transaction modeling. What is needed is a more flexible mapping between concrete

inputs and outputs and their abstract counterparts, such as that demonstrated in Figure 2.7. In this figure, the

address field of a transaction packet is seen to be associated with a concrete signal (L_ad) at a concrete time

tp'; the data field is associated with the same concrete signal but at a different time--t_data'. These relation-

ships are essentially the same as those of the local-processor's L_Bus, for example, where the address and

data are multiplexed over the same set of physical signal wires. In the next section we describe how to imple-

ment this abstraction to ensure secure transaction-level composition.

2.4 Composition

Given a set of individual hardware components, composition is the process by which these components

are formed into a single aggregated system. The issue of composition looms large in our current work

because of our desire to compose hardware subsystems at the transaction level of abstraction rather than

some lower level. Composing subsystems at such an abstract level has the inherent risk of being unsound

unless a formal argument can be made otherwise.

A second issue of concern to us is wired logic; that is, systems in which two or more logic gates have

their outputs tied to a common node. We are not interested in the general problem however, only in situations

where these gates are tri-state buffers. This is a well-studied problem, but we are not completely satisfied

with many of the solutions that we have seen in the literature.

In this section we address these two issues, in reverse order, in the following two subsections.

2.4.1 Dealing with Tri-States

It has been pointed out in several places that predicate-style composition, as presented in [Got86], com-

bined with implication-style correctness proofs, can be a recipe for disaster (e.g., [Cam86]). The problem is

that ifa circuit node is driven by the outputs of two or more logic gates, then it is possible for the node value
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Figure 2.7: Interval Abstraction to Address the Many-to-Many Problem.

to equal both true and false at the same time. This inconsistency can result in the antecedent of the correct-

ness statement evaluating to false and allow a faulty circuit to be proven 'correct.' This problem was called

the 'false implies everything problem' in [Cam86].

Several approaches have been proposed to deal with circuits containing wired-logic nodes. In [Mei90]

it is suggested that the ideal solution to this problem would be to define more accurate models for the com-

ponents driving onto the common node. With these accurate models it would then be possible to safely use

the standard predicate style composition, which is the author's objective. However, using extremely detailed

models such as this would run counter to our desire to raise, not lower, the abstraction level of our sub-

systems before composition.

In [Mel90] it is also suggested that, as a more practical solution, a consistency theorem could be proven

for the circuit in question. Ignoring state, such a theorem for a circuit C with inputs it ..... in and outputs oj,

.... Om would read "for all it ..... in there exist values for ol ..... om such that C (it ..... in,or ..... ore) is true."

Such a theorem does establish the absence of inconsistencies, but at the cost of introducing a major proof

obligation for all but the most trivial circuits.

In [Joy89] a BuaO_y predicate, defined to be true exactly when there are no conflicts, is used to condi-

tion the writing of tri-state buffer outputs onto a bus. The BusOkay predicate takes as inputs the enables for

all of the tri-states on the bus, and represents a logical entity rather than a physical entity. While we believe

that this approach is on the right track, we also believe that it is not as good as one described earlier by the

same author.

The description of the Tamarack microprocessor ([Joy88]) contains a solution to the 'false implies

everything problem' based on an explicit model for the interconnect being driven by the tri-states. Figure

2.8 shows an example node model of a bus containing three tri-state buffers. The input signals in this circuit
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wouldbemodeledusinga4-valuedlogic(HI,LO, X, Z), where HIand LO correspond to their boolean coun-

terparts, X is the 'unknown' value, and Z is the 'high-impedance' value. For this node model the boolean-

valued output d would take a value of T or F only if exactly one of the three inputs were HIor LO, respec-

tively, and the other two were Z. If more than one input were non-Z, then the output would be unknown. As

we discuss next, this approach has considerable merit and is used in the PIU specification.

b Bus d

12

Figure 2.8: Structural View of a Bus Node Model.

As others do, we view the 'false implies everything problem' as a modeling problem that is best solved

with a modeling solution. It is clear that any circuit model containing a node whose value is both true and

false does not reflect the actual circuit behavior. Just as we would not accept a model construction procedure

that occasionally modeled AND gates using logical-OR behavior, we believe that it should not model bus

nodes incorrectly either.

An important advantage of bus node models is that they help to provide a solution to the 'false implies

everything problem' based solely on arguments of circuit structure, and that these arguments can be incor-

porated into a correcmess proof for the process used to construct structural models, from a netlist for exam-

ple. If one accepts the argument that a circuit contains no inconsistencies when no node has more than one

component output attached to it, then we believe that a recursively-defined model construction procedure

can be designed and then proven to never produce an inconsistent structural model.

The basic idea is to prove such a theorem by induction on the number of steps in the model construction.

The base case would require correct components. The induction step could be argued based on the construc-

tion procedure receiving the next netlist element, as well as the current structural model, and then returning

the model updated with the new element. With node models available in the formal-model library, it should

be possible to design a procedure that could be proven this way. For example, as a bus was being built up,

an n-input model would be replaced by an n+l-input model, and so on.

This approach has advantages over the others described above in that it doesn't require new, detailed

component models; it doesn't require a consistency proof for every circuit--the construction procedure is

proven only once; and it is much more rigorous than the ad hoc BusOkay-predicate approach, which has no

enforcement mechanism--a verifier can forget to prove the appropriate theorems, for example.

2.4.2 Transaction-Level Composition

The only work, that we are aware of, addressit_g secure, abstract-level composition is contained in

[Mel90]. Of relevance to us is a definition of secure composition from this work that we repeat in Figure

2.9. This meta-theorem is read: "if an implementation M 1 satisfies specification S1, and if M 2 satisfies S2,

then the composition ofM t and M 2, together, satisfies the composition ofS 1and $2." The 'satisfaction' rela-
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tionsatis,forus,logicalimplication.ThevariableF represents the abstraction function mapping the vari-

ables of the implementation to the variables of the specification.

[- M l sat S1 [- M 2 sat S2
F F

[" (M l A M 2 ) sat ( S l A S2 )
F

Figure 2.9: A-MONO Meta-Theorem (from [Mel90]).

Again, this is a definition establishing what needs to be proved to ensure a secure composition of two

abstract-level components, S 1 and S2. This may be difficult to see because the interfacing variables between

Sl and S2 are not explicitly shown in the figure. Implicitly though, the conjunction S 1 A S 2 indicates that

the interfacing variables are equated through common, existentially-quantified, variables in the normal

predicate-style composition. In [Mel90], it is stated that meta-theorems of this type are straightforward to

prove.

While Figure 2.9 provides a good definition of secure, abstract-level composition, its applicability is

limited by its insistence on having the same abstraction function within each component. Unfortunately, the

components of the PIU (the ports) do not share the same abstraction function and, therefore, cannot use this

definition. However, as we shall explain next, it is not necessary that the entire abstraction function be the

same across the components, only those parts directly involved in the component interfaces need to be.

2.4.2.1 An Intuitive View of Composition

To provide some insight into precisely what needs to be proved to achieve secure, abstract-level com-

position, we present a simple composition problem. Figure 2.10 shows a small system, consisting of two

components, named M and S (for master and slave). Part (a) shows the system at the transaction level, for

example, while part (b) shows the clock-level view. Part (c) is an informal description of the relationship

between the clock- and transaction-level signals. This is a protocol similar to that used within the Intel

80960 L_Bus, hence the L_Bus signal names L ready and L_ad (see Section 5).

The transaction-level composition problem can be stated as follows:

"Given that we can assert the equivalence of the clock-level signals L ready_m and L ready s, and

of L ad m and L ad_s, prove that we can assert the equivalence of the transaction-level signals

Data_m and Data_s?'

In other words, an intuitive notion of two components being 'composed' together is that all of their common

interface signal values are equivalent, at all times. A composition of abstract components is 'valid' if the

abstract-level equivalences follow from the concrete-level equivalences, via the relevant abstraction func-

tions. An 'invalid' composition is one that cannot be proven this way, nor can it be reasonably assumed.

Only compositions at low levels of abstraction (such as the clock level) can reasonably be asserted, and even

then, issues such as tri-state drivers, as explained above, mandate extreme caution here as well.

Intuitively, we would expect that the transaction-level components of Figure 2.10 could be composed if

the components both obeyed the protocol described in Figure 2.10(c). If we let the abstraction functions for

the two components be called Abs_M and Abs_S, then this idea can be formalized as requiring:

Abs_M = Abs_S I
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M_Trans
Data_m

Data_s v I S_Trans

(a) Transaction-Level Structure.

M

assert equivalent

L_ready_m _ L_ready_s

L ad m.._ _ L ad s S

(b) Clock-Level Structure.

let t' = "the first time during the transaction that L_ready is true" in

Datat = L_adt'

(c) Informal Bus Protocol.

Figure 2.10: Example Transaction-Level Composition Problem.

Now, with the following definitions for the abstract variables Data_m and Data_s:

I

Data_m = Abs_M (L_ad_m, L_ready_m) [

Data_s = Abs_S (L_ad_s, L_ready_s) I
and with the clock-level assertions:

I

L ad s = L ad m I

IL_roady_l = L_rudy_m

we can conclude immediately that:

Data_m = Data._s

What this discussion implies is that, by requiring an equivalence between those parts of the abstraction

function that define shared inputs and outputs, we can prove a theorem similar to the metatheorem of Figure

2.9. (Our formal treatment of this topic will be included in a future report.) Note that we have not simply

restated the composition guidelines of [Mel90], with ourAbs_M (or Abs_S) playing the role of F. The key

difference is that we only require an equivalence between those parts of the abstraction function that define

the abstract inputs and outputs linking the components (not the state, nor other unrelated inputs and outputs).
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This is important as the complete abstraction functions within the various ports of the PIU are quite differ-

ent.

2.4.2.2 More Intuition Based on Abstraction Requirements

In this section we provide more intuition into the composition process, based on additional abstraction

considerations. Figure 2. I 1 provides the basis for the discussions of this section. This figure depicts the same

system that was shown in Figure 2.10. The difference here is that the transaction-level specification models,

M Trans and S Trens, are shown being implemented by their corresponding clock-level models, plus the

abstraction definitions, Abs_M and Abs_S.

Data_m Data s

M_Trans _ ---[-I_ [ S_Trens

implements_/_x,_
Oata_m Oata_s

L ad m "-_

implements /_

L_ready_s

Lads

Figure 2.11: Intuitive Description of the Interaction Between Composition and Abstraction.

In the implementation verification of a subsystem with a nontrivial abstraction between the concrete and

abstract levels, the abstraction definition must permit the abstract input variables to be mapped down to the

concrete level (see Section 6 and [Fur93a]). In the system of Figure 2.11, this means that the inverse func-

tion, Abs_S "1, must exist (to map the input Data_s down to L rendy_s and L_ad s). Furthermore, because of

the equivalence (assumed here) between Abs_M and AbsS, the following relationship must hold:

I Abs_S "1 o Abs_M = i (the identity function)

In the context of Figure 2.11, this means that the signals L_ready_m and L_ad_m, after being mapped up

via AbsM and then back down via Abs_S "1, are completely restored as L_ready_s and L ad_s, respectively.

In other words, composing the structure M-Abs M with the structure Abs_S-S (via the interfacing signals

Data_m and Datas) has the same effect as composing M and S directly (using 'L_ready' and 'L_ad'), which

is assumed to be a valid thing to do. The interface blocks Abs_M and Abs_S cancel each other.

While this discussion is not intended to convince the reader of the validity of our approach to abstract-

level composition, it does provide additional insight (graphically) into why properly constructed abstrac-

tions are necessary to achieve secure abstract-level composition.
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3 Formal Models for PIU Specification and Verification

This section describes our development of formal models to address the specification and verification

requirements of the PIU. Section 3.1 describes a significant amount of new work performed on the generic

interpreter theory. Section 3.2 describes our work in exploring the possible use of LINDA as a model for

the transaction-level specification of the PIU. Section 3.3 describes some of the problems that we encoun-

tered in our attempt to generalize the generic interpreter theory for use in transaction-level modeling. Sec-

tion 3.4 briefly discusses the development of a pre-post interpreter model that was ultimately used in the

specification and verification work described in Sections 4 and 6 of this report.

3.1 The Generic Interpreter Theory

This section describes the generic interpreter theory upon which our PIU specification work is based.

The work described in this section grew out of efforts to model microprocessors and thus the discussion fo-

cuses heavily on microprocessor specification and verification. However, we have discovered that the mod-

el is useful for describing other hardware devices as well. The generic interpreter theory is described more

fully in [Win90a].

Our treatment of generic interpreters in this section includes recent changes to the model that result in

more generality. The most important changes are as follows:

1. The abstract representation now uses a general synchronization predicate to define the temporal abstrac-

tion. In previous versions of our model, the abstract representation contained two functions, which were

combined in a specific way to create the predicate. See Section 3.1.3.2 for more details.

2. By not specifying the structure of the predicate, we were able to define a more general composition op-

eration. We define a composition operator that operates on two generic interpreters and produces a new

generic interpreter. The new generic interpreter has all of the properties of any other generic interpreter.

We show that the composition operator is associative. See Section 3.1.3.4.6 for more details.

3. We have recently begun to view interpreters and abstractions between them in a new way that promises

to provide insight into the problem of choosing the correct abstractions in a computer system specifica-
tion. We discuss our preliminary results in Section 3.1.4.

The generalizations described above are not all that is necessary for modeling the top level of the PIU.

We will address the necessary generalizations in Section 3.3.

3.1.1 Introduction

The formal specification and verification of microprocessors has received much attention. Indeed, sev-

eral verified microprocessors have been presented in the literature. This section presents a model, common

to all of them, that can be used to guide future work in this area. The model def'mes an abstract micropro-

cessor specification (called a generic interpreter) and proves important theorems about it.

We have formalized the interpreter model in the HOL theorem proving system [Gor88]. The formal

model can be instantiated inside the system and serves as a framework for writing microprocessor specifi-

cations and verifying them. This framework clearly states what definitions must be made to specify the mi-

croprocessor and which lemmas must be established to complete the verification. After the user has defined

the components of the microprocessor and proven the necessary lemmas about them, individual theorems

from the abstract theory can be instantiated to provide concrete theorems about the microprocessor being
verified.
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Themodelthatwehavedefinedhasproventobeusefulin specifyingandverifyingseveralmicropro-
cessors[Win90a],[Lev93],[Coe92].Themodelisnot,however,limitedto microprocessors.Recentwork
hasshownthatthemodelcanbeusedinspecifyingotherhardwaredevicesaswell [Win91].

Themodelwehavedefineddiffersfromotherformaldescriptionsof statemachines(suchasLoewen-
stein'smodelin [Low89])byincludingin theformalizationthedataandtemporalabstractionsthatareim-
portantinspecifyingandverifyingmicroprocessors.

3.1.2 Formal MicroprocessorModeling

Therehavebeennumerouseffortstoformallymodelmicroprocessors.Thebestknownof theseinclude
JeffJoyce'sTamarackmicroprocessor[Joy89],WarrenHunt'sFM8501microprocessor[Hun87],andAvra
Cohn'sVIPERmicroprocessor[Coh88].Tamarackis asimplemicroprocessorwithonly 8 instructions.
FM8501is larger(roughlythesizeofaPDP-I1),buthasnotbeenimplemented(a32-bitversioniscurrently
beingverifiedandimplementedbyHunt,et. al. [Hun89]). Perhaps the most interesting of these is VIPER

since even though VIPER is significantly simpler than today's general purpose microprocessors, its verifi-

cation provides a benchmark on the state-of-the-art in microprocessor verification. VIPER was designed by

Britain's Royal Signals and Radar Establishment (RSRE) at Malvern to provide a formally verified micro-

processor for use in safety critical applications, and is commercially available. VIPER is the first micropro-

cessor intended for commercial use where formal verification was used. However, the verification has not

been completed because of the large number of instruction cases that occurred and the size of the proofs in

each of the cases. This is not to say that the proof could not be completed; but only at large expense. Recent

work on hierarchical specification [Win90b], coupled with the work presented here, has overcome the prob-

lems that faced the VIPER verification team, and microprocessors significantly more complicated than VI-
PER are now within the realm of formal treatment.

The specifications for the microprocessors mentioned above appear very different on the surface; in

fact, the specification of FM8501 is even in a different language than the specifications of Tamarack and

VIPER. On closer inspection, however, we find that each of them (as well as many others) use the same

implicit behavioral model. In general, the model uses a state transition system to describe the microproces-

sor. We call this model an interpreter. The essence of verification is to relate mathematical models at differ-

ent levels of abstraction.

The rest of this section gives a mathematical definition of the interpreter model and shows how two in-

terpreters are related. In the discussion that follows, and for the rest of the section, we speak of the 'abstract

level' and 'concrete level,' but keep in mind that these terms are relative; as we move up and down a hier-

archy of interpreters, what we call 'abstract' at one level will be termed 'concrete' with respect to the level

above it. As a matter of convention, we will annotate variables representing the concrete level with primes

throughout the rest of the section.

3.1.2.1 Interpreters

An interpreter is a computing structure with one control point. One of the many available instructions

is chosen at this control point based on the current state and inputs. The state is then processed by this in-

struction and the cycle begins again.

In general, a microprocessor specification can consist of many abstraction levels. Every level except the

bottom specification (which is the structural specification) can be modeled as an interpreter. A hierarchical

approach to specification and verification has been shown to significantly reduce the amount of effort re-

quired to complete the verification of a microprocessor [Win90b].
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3.1.2.2 Basic Types

The basic types for our model are shown in Table 3.1. In addition to these basic types, we also use the fol-

Table 3.1: Basic Types.

Symbol

T

N

Members

{true, false }

{0, 1,2 .... }

Meaning

truth values

natural numbers

B N --_ T bit vectors

M N _ B stores

lowing type constructors: product, written (ix x _i); coproduct, (or sum) written (ix+13); and function, writ-

ten (or _ 13). An n-tuple is indicated by (ixl x ix2x.., x tin_ l x ix).

3.1.2.3 State

At times it is convenient to treat state as an object of type S, where S is uninterpreted. This allows us

to treat state in an abstract manner, knowing nothing of its structure or content. Eventually, we will provide

interpretations for Sto model a specific machine. To provide such an interpretation, we represent state using

n-tuples. We let S be the domain of n-tuples representing state. These n-tuples have the type:

where

(0_ 1 X (/,2 x . . . X (Xn_ 1 X O_n)

Vi.t_ eT+B+M
l

Whether or not S is interpreted, we write S _ S' to indicate that S is an abstraction of S'. The fact that

S is an abstraction of S' implies that there exists a function, o : S' --> S. The function a is called the state

abstraction function.

3.1.2.4 Time

In general, different levels in the interpreter hierarchy have different views of time. A temporal abstrac-

tion function maps time at the abstract level to time at the concrete level [Her88, Joy89, Me188]. Figure 3.1

shows a temporal abstraction function *. The circles represent clock ticks. Notice that the number of clock

ticks required at the concrete level to produce one clock tick at the abstract level is irregular.

The temporal projection, _, can be defined recursively on time. We define * in terms of a predicate, F,

which is true whenever there is a valid abstraction from the concrete level to the abstract level. In a micro-

processor specification, F is usually a predicate indicating when the lower-level interpreter is at the begin-

ning of its cycle--a condition that is easy to test. The function • is defined recursively so that q_(F, 0) is the

first time that F is true and *(F, (n+l)) is the next time after time n when F is true. The resulting function

is monotonically increasing. We use N to represent time. Thus, we define • : (N --+ T) x N --+ N such that

V n, m. (n > m) D (_(F, n) > _(F, m))
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Figure 3.1: The Temporal Abstraction Function.

We refer the interested reader to the references given above and [Win90a] for the details of the temporal
abstraction function.

3.1.2.5 State Streams

A state stream is a function from time to state, N --_ S. We have chosen n-tuples of booleans, bit-vectors,

and stores to represent state. The application of a stream to some time, t, yields an n-tuple representing the

state at time t. We use a lambda expression for our concrete representation.

t.(a It,a 2t ..... an. lt,a nt)

where

Vi.a :N --4 (T+B+M)
/

An important part of our theory is the abstraction between state streams at different levels. State stream

s is an abstraction of state stream s' (written s _ s') if and only if

1. each member of the range of s is a state abstraction of some member of the range of s' and

2. there is a temporal mapping from time in s to time in s'.

There are two distinct kinds of abstraction going on: the first is a data abstraction and the second is a

temporal abstraction. Using the state abstraction function, tJ, and a temporal abstraction function, _ (defined

in terms of O and l-), we define stream abstraction as follows

s_s" - 3(o:S'--->S).3(_:N-->N)._os'or=s

where o denotes function composition.

3.1.2.6 Environments

The environment represents the external world; it plays an important part in our theory. The environ-

ment is where interrupt requests originate, reset signals are generated, and so on. In our model, the environ-

ment is used only for input; output to the environment is assumed to be simply a function of the state and

environment. At the abstract level, we treat the environment as an uninterpreted type. We know nothing

about its structure or content. We denote it as E. Just as we defined c, the state abstraction function, we

define an environment abstraction function, e, such that e : 1¢'--->E. When we provide an interpretation for
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e, we represent the environment using n-tuples of booleans and bit-vectors. We perform the same kinds of

abstraction on the environment as on states. Temporal abstraction is performed as it was for states. We de-

fine abstraction for environment streams in the same manner that we defined it for state streams. Thus, we

write e _ e" when e is an stream abstraction of e" and define stream abstraction for environment streams as

follows:

ece' - 3(e.E'--->lg).3(_:N-->Bl).eo e'ox=e

3.1.2.7 The Interpreter Specification

The preceding parts of this section have given preliminary definitions for concepts important in the

mathematical definition of interpreters. This section presents that definition. Interpreters are state transition

systems. The difference between our model of interpreters and other models of state transition systems such

as deterministic finite automata (dfa) is that our model accounts for state abstraction and aggregation. By

state aggregation, we are referring specifically to stores. A store represents a collection of state that we deal

with as a monolithic unit. In a dfa model, each location in memory is typically represented by a different

piece of state, which would be treated individually.

An interpreter,/, is a predicate defined in terms of a 3-tuple, (d, K, G"),where d, K, and 12are defined

as follows:

• Letd be the type of all functions with domain (Sx E) and codomain S. Not all functions ind are mean-

ingful; the specifier's job is to choose meaningful functions. We use a subset ofd to represent the in-

struction set; we call this set d. The functions in d provide a denotational semantics for the instructions

that they represent.

• In order to uniquely identify each instruction in d, we associate it with a unique key. At the abstract level,

we take keys from the uninterpreted domain K. At the concrete level, keys can have various representa-

tions. We must be able to choose instructions from d according to some predefined selection criteria. The

selection is based on the current state and environment. We define Kto be a function with domain (S x

lg) and codomaln lK.
• We define 12 to be a choice function that has domain (J x K) and codomain (S x 1_ --> S). That is, 12

picks the state transition function from d that has a particular key in lK.

We define an interpreter, I [s, e], as a predicate over the state stream, s, and the environment, e. The

definition of I is given as

I[s,e] -- V t:N.s(t+l)=C(d, kt)(st, et)

where

k t = l((st, et)

The predicate constrains the state of the interpreter at time t+l to be e, function of the state and environ-

ment at time t. The function is determined by the instruction currently selected by K.

3.1.2.8 Interpreter Verification

Our goal is to prove a correctness relation between the interpreters at different levels of a microproces-

sor abstraction. In particular, for two interpreters,/,,, and Ir we wish to show that
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Im[Sm, em] _ It[s t , e l ]

where sm (e) is the state (environment) stream at level m, s t (e t) is the state (environment) stream at level

l and s t _ s (e t _ era). When this implication is true, It is an abstraction of / and / is said to implement !t.

The correctness theorem given above follows from the following lemma:

Vj _ J. Ira(Sin,era) Aj = C(J, k t) D 3 c. (_ 0 s) (t+c) =j((c_ O s m) t, (80 e) t)

This lemma, which we call the instruction correctness lemma, states that every instruction follows from the

concrete interpreter,/m" Specifically, it says that for every instruction,j in d, ifj is selected, then applyingj

to the current abstract state and environment, (a o sin) t and (e o em) t, yields the same abstract state that

results from letting the concrete interpreter/m run for c cycles. The instruction correctness lemma suggests

a case analysis on the instruction set. In addition, the instruction correctness lemma ignores temporal ab-

straction, stating only that there exists a time in the future when the states correspond. Thus, the proof obli-

gation on the user of the genetic interpreter theory has little to do with the temporal abstraction reasoning

necessary to verify a microprocessor. That is all contained in the abstract theory. This lemma plays an im-

portant role in the work that we describe next.

3.1.3 A Formal Model of Interpreters

This section presents our generic interpreter theory for the HOL verification system. The basic structure

is the same as presented in the last section. In addition to the correctness result, however, we prove several

other important theories about interpreters including an induction theorem and a theorem about hierarchical

composition of interpreters.

3.1.3.1 Abstract Theories

A theory is a set of types, definitions, constants, axioms and parent theories. Logics are extended by

defining new theories. An abstract theory is parameterized so that some of the types and constants defined

in the theory are undefined inside the theory except for their syntax and a loose algebraic specification of

their semantics. Group theory is an example of an abstract theory. The multiplication operator is undefined

except for its syntax (a binary operator on type ":group') and a loose semantics given by the axioms of group

theory.

Abstract theories are useful because they provide proofs about abstract structures that can be used to

reason about specific instances of the structure. In groups, for example, after showing that addition over the

integers satisfies the axioms of group theory, we can use the theorems from group theory to reason about

addition on the integers.

An abstract theory consists of three parts:

1. An abstract representation of the uninterpreted constants and types in the theory. The abstract repre-

sentation contains a set of abstract operations and a set of abstract objects. (These are sometimes called

uninterpreted constants and uninterpreted types.)

2. A set of theory obligations defining relationships between members of the abstract representation. Inside

the theory, the obligations represent axiomatic knowledge concerning the abstract representation. Out-

side the theory, the obligations represent the criteria that a concrete representation must meet if it is to

be used to instantiate the abstract theory.
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3. A collectionof abstract theorems. The theorems are generally based on the theory obligations and can

stand alone only after the theory obligations have been met.

To instantiate an abstract theory, the concrete representation must meet the syntactic requirements of

the abstract representation as well as the semantic requirements of the theory obligations. If the syntactic

and semantic requirements are met, then the instantiation provides a collection of concrete theorems about

the new representation.

There are several specification and verification systems that support abstract theories. Some, such as

OBJ [Gog88] and EHDM [SRI88], offer explicit support. HOL, the verification environment used for the

research reported here, does not explicitly support abstract theories; however, HOL's metalanguage, ML,

combined with higher-order logic, provides a framework for concrete abstract theories in a manner that does

not degrade the trustworthiness of the theorem prover. See [Win92] for details on using abstract theories in
HOL.

3.1.3.2 The Abstract Representation

We specify the abstract representation by defining a list of abstract objects and operations. Table 3.2

shows the operations and their types.

Table 3.2: The Abstract Functions and their Types for the Generic Interpreter Model.

Operation Signature

instructions :* key--_(* state--_*env --_* state)

select :*state--_*env---_* key

output :* key--_(* state_* env--_* out)

substate :*state'S* state

subenv :*env'._*env

subout :*out'---->*out

implementation :(time'--_* state')-->(time'--_*env')--_bool

sync :* atate'---_* env'---_bool

We must emphasize that the representation is abstract and, therefore, the objects and operations have no def-

initions. The descriptions that follow are what we intend for the representation to mean. The representation

is purely syntactic, however.The following abstract types are used in the representation.

• :*state represents the state and corresponds to S from the last section.

• :*env represents the environment and corresponds to E from the last section.

• :*out represents the outputs. In the model in the last section, outputs were assumed to be a function of

the current state and environment. In the formal model we will represent this explicitly.

• :*key is a type containing all of the keys and corresponds to K from the last section.

The abstract representation can be broken into three parts. The first contains those operations concerned

with the interpreter.

• instructions is the instruction set. The set is represented by a function from a key to a state transition func-
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tionandcorrespondstod from the last section.

• select picks a key based on the present state and environment and corresponds to K from the last section.

• output is a set of output functions. The set is represented by a function from a key to a function that pro-

duces output for a given state and environment.

The second part contains the abstraction functions:

• substate is the state abstraction function for the interpreter and corresponds to _ from the last section.

• subenv is the environment abstraction and corresponds to e from the last section.

• subout is the output abstraction.

Because we want to prove correctness results about the interpreter, we must have an implementation.

The third part of the abstract representation contains three functions that provide the necessary abstract def-

initions for the implementation.

• implementation is the abstract implementation. We could have chosen to make this function more con-

crete, but doing so would require that every implementation have some pre-chosen structure. Thus, we

say nothing about it except to define its type.

• sync is the synchronization predicate for the temporal abstraction and corresponds to F from the last sec-

tion.

The components of the last part of the abstract representation correspond to the concrete interpreter from a

level below the abstract interpreter we are defining.

3.1.3.3 The Theory Obligations

Proving that the implementation implies the interpreter definition is typically done by case analysis on

the instructions; we show that when the conditions for an instruction's selection are right, the instruction is

implied by the implementation. We call this the instruction correctness lemma.

The predicate INSTRUCTION_CORRECT expresses the conditions that we require in the instruction cor-
rectness lemma:

I-ae/ INSTRUCTION_CORRECT gi s' e' p' k =
(implementation gi s' e' p')

(V t.

let s t = substate gi (s' t) in
let e t = subenv gi (e' t) in

let f t = sync gi (s' t) (e' t) in (

(select gi (s t) (e t) = k) A

(ft)_

qc.

Next f (t, t+c) A

(instructions gi k (s t) (e t) = (s (t + c)))))

INSTRUCTION_CORRECT operates on a single key, k. This theory obligation requires that the implemen-

tation imply that for every time, t, ifk is the key returned by select and the synchronization predicate is true,

then there is a time c cycles in the future such that applying the instruction selected by k to the current state

yields the same state change that the implementation does in c cycles.

INSTRUCTION_CORRECT is a good example of the kind of information that is captured in the generic

model. Previous microprocessor verifications created this lemma, or one similar to it, in a largely ad hoc

manner.

31



Because our model has outputs as well as inputs (the environment), we must also prove something about

the output in order to establish correctness. The predicate OUTPUT_CORRECTexpresses the conditions that

we require in the output correctness lemma:

I-def OUTPUT_CORRECT gi s' e' p' k =
(implementation gi s' e' p') :_
(Vt.

let s t = substate gi (s' t) in
let e t = subenv gi (e' t) in
let p t = subout gi (p' t) in
let f t = sync gi (s' t) (e' t) in (
(select gi (s t) (e t) = k) A
(ft)
(p t = (output gi k) (s t) (e t))))

OUTPUT_CORRECT is similar to INSTRUCTION_CORRECT. The major difference is that output is assumed

to happen instantaneously and thus there are no temporal considerations.

Using INSTRUCTION_CORRECT and OUTPUT_CORRECTwe can define the theory obligations for our

model. The theory obligations are given as a predicate on an abstract representation gi:

l-=r,lGI gl =
(V s' e' p' k. INSTRUCTION_CORRECT gi s' e' p' k) ^
(V s' e' p' k. OUTPUT_CORRECT gi s' e' p' k)

The predicate says that every instruction in the instruction set satisfies the predicate INSTRUCTION_COR-

RECT and every output function satisfies the conditions set forth in OUTPUT_CORRECT.

3.1.3.4 Abstract Theorems

Using the abstract representation and the theory obligations, many useful theorems pertaining to inter-

preters can be established on the generic structure.

3.1.3.4.1 Defining the Interpreter

One of the important parts of the collection of abstract theorems is the definition of a generic interpreter.

The definition is based on functions from the abstract representation.

I--jef INTERP gi • • p =
Yr.

let k = (select gi (• t) (e t)) in
(s (t+l) = (Instructions gi k) (s t) (e t)) ^
(p t = (output gi k) (• t) (e t))

The specification of an interpreter is a predicate relating the contents of the state stream at time t+l to the

contents of the state stream at time t. The relationship is defined using the functions from the abstract rep-

resentation. The definition also uses the currently selected output function to denote the current output.
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3.1.3.4.2 Induction on Interpreters

The definition of the interpreter sets up a relation between the state at t and t÷l. Sometimes it is useful

to have a more explicit statement regarding induction. The following theorem, which follows from the def-

inition of the interpreter given in Section 3.1.3.4.1, defines induction on an interpreter:

V Q. INTERP gis e p
(0 (s o) ^

V t. let inst = (instructions gi (select gi (s t) (e t))) in (
O (s t) :_ O (inst (st) (e t)))) :_

Vt.Q(st)

The theorem states that for any arbitrary predicate on states, Q, if Q is true of the state at time 0 and when Q

is true of the state at time t, it follows that it is also true of the state returned by the current instruction, then

O is true of every state.

We note that even though this theorem looks fairly simple, and indeed is quite easy to show in the ge-

neric theory, the theorem will eventually be instantiated with the entire denotationai description of the se-

mantics of a particular instruction set and will be quite involved. The same admonition holds for each of the

theorems and definitions presented in this section.

3.1.3.4.3 The Implementation is Live

Using the theory obligations, we can prove that the implementation is live. By live we mean that if the

implementation starts at the beginning of its cycle, then there is a time in the future when the implementation

will be at the beginning of its cycle again. That is, we show that the device will not go into an infinite loop.

implementation gl s' e' p'
(V t. (sync gi (s' t) (e' t))

(3 n. Next (_.t. sync gi (s' t) (e' t)) (t, t + n)))

Next P (I1, t2) says that t2 is the next time after tl when P is true.

3.1.3.4.4 The Correctness Statement

The correctness result can be proven from the definition of the interpreter and the theory obligations:

let s t : substate gi (s' t) and
• t : subenv gi (e' t) and
p t : subout gi (p' t) and
g t = sync gi (s' t) (e' t) in

let sbs = Temp_Abs f in
(implementation gi s' e' p') A
(3t. ft)
(INTERP gi) (s o sbs) (e o abs) (p o abs)

In the correctness statement, s', e', and p' are the state, environment, and output streams of the imple-

mentation. The function abs is defined in terms of a general purpose temporal abstraction function, Tem-

p_ABS, corresponding to • and a predicate, g, corresponding to F. The terms (s oabs), (e o abs), and (e o
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abs) are the state, environment, and output streams for the interpreter defined in the model. They are data

and temporal abstractions ors', e', and p'. The correctness statement says that if the implementation is valid

on its state, environment, and output streams and there is a time when the concrete clock is at the beginning

of its cycle, then the interpreter is valid on its state and environment streams.

3.1.3.4.5 Vertically Composing Interpreters

In [Win90b], we show that hierarchical decomposition makes the verification of large microprocessors

practical. To support this decomposition, the generic interpreter model contains a theorem about vertically

composing genetic interpreters.

I. (INTERP gil = implementation gi2)

V s" e" p".

let s' t = substate gil (s" t) and
e' t = subenv gil (e" t) and
p' t = subout gil (p" t) and
f t = sync gil (s" t) (e" t) in

let s t = substate gi2 (s' t) and
e t = subenv gi2 (e' t) and

p t = subout gi2 (p' t) in

let absl = Temp_Abs f in
let g t = sync gi2 ((s' o ab$1) t) ((e' o absl) t) in

let abs2 = ab$1 o (Temp_Abs g) in
(implementation gila" e" p") A

(3 t. ft)

_t. gt)

INTERP gi2 (s,o ab$2) (e o ab$2) (p o abs2)

This theorem states that if gil and gi2 are genetic interpreters and they are connected such that the interpreter

definition ofgil is the implementation ofgi2 then the implementation ofgil implies the interpreter definition

of gi2. This important theorem captures the temporal and data abstractions required to compose two inter-

preters.

3.1.3.4.6 A More General Vertical Composition Theorem

The theorem in the last section showed how two interpreters can be composed. In general, however, we

need to compose more than two interpreters to arrive at a final correctness statement for a hierarchy of spec-

ifications. After the theorem in the last section has been used, the result cannot be composed with a third

interpreter.

More generally, we can say that any two generic interpreters can be composed to form another generic

interpreter as long as the implementation of one is the interpreter of the other. We define a composition op-
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eratorasfollows:

i--clef GI_VERT_COMP gil gi2 =

GI ((instructions gi2)

(select gi2)
(output gi2)
((substate gi2) o (substate gil))
((subenv gi2) o (subenv gil))
((subout gi2) o (subout gil))
(implementation gil)
(;_se.

(sync gil s e) A
(sync gi2 (substate gil s) (subenv gil e)))

The resulting structure composes the data abstractions using function composition and requires that the syn-

chronization predicates at both levels be true.

We can prove that the structure resulting from such a composition is a generic interpreter (i.e., it has 'all

the properties of a generic interpreter) under a single restriction:

l I- (INTERP gil = implementation gi2) _ IS_GI (GI_VERT_COMP gil gi2) ]

Provided that the interpreter defined by the first is the implementation of the second, the resulting struc-

ture is a generic interpreter. This theorem is more generally useful since we can prove the theory obligations

of each level of the hierarchy separately, show that the composition of these separate results is a generic

interpreter using this theorem, and then use the result to instantiate the correctness theorem from Section

3.1.3.4.4 to show that the bottom-most member of the hierarchy implies the top-most member.

A further result shows that the order of the composition is unimportant:

I- GI_VERT_COMP gil (GI_VERT_COMP gi2 gi3) =

GI_VERT_COMP (GI_VERT_COMP gil gi2) gi3

The generic interpreter theory contains the structure for the entire proof, freeing the user from worrying

about the data and temporal abstractions that result from the composition. The theorems about vertical com-

position are good examples of the utility of abstract theories in hardware verification. The theorems are te-

dious to prove in specific cases, and were they not contained in the abstract theory, they would have to be

proven numerous times in the course of a single microprocessor verification.

3.1.4 An Alternate View of the Generic Interpreter Theory

We have recently been working on an alternate expression of the generic interpreter theory. In this new

expression, an interpreter is seen as an independent entity. This is quite different from the approach in the

generic interpreter model where an interpreter is defined at the same time as the abstractions that take place

from its implementation.

In this alternate view, we view the abstractions between interpreters as an ordering relation. So, showing

that an interpreter, In, is an abstraction of an interpreter, In+l, (i.e., that it is correct) is the same as establish-
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inganorderingonthosetwointerpreters.Wewrite:

In + I D_In

when such an ordering exists.

We have shown that abstraction ordering on generic interpreters is a true partial order. That is, the or-

dering operator is reflexive, antisymmetric, and transitive. Transitivity is the same property as vertical com-

position from Section 3.1.3.4.6. Thus we can form the partially ordered set (1,_) over generic interpreters.

When applied to a particular computer system, the partial order forms a lattice. For example, suppose

that we have an implementation with three state variables, I(a,b,c). The specification is in terms of only state

variable c and so for it we write l(c). As the following Hasse diagram shows, l(a,b,c) _ l(a,c) _ I(c) and

l(a,b,c) _ l(b,c) _ l(c), but l(a,c) and l(b,c) are incomparable.

l(c)

l(b,c) l(a,c)

I(a,b,c)

Over an entire computer system verification, this lattice is, of course, quite large. We are not interested

in every path through the lattice, but only a single chain from the implementation to the top-level specifica-

tion. However, our previous work has shown that the choice of which path to take can have serious reper-

cussions in the amount of effort to complete the verification [Win90b]. Our goal is to use findings about this

lattice structure in the generic arena to guide abstraction choices in specific verification efforts.

To our knowledge, we are the first to view the problem of abstraction choice as a lattice theoretic ques-

tion. There is a significant amount of mathematical theory developed about lattices and we are only begin-

ning to explore the ramifications of this theory to our model.

3.1.5 Parallel Composition

Our eventual goal is to use the work that is described in Section 6 to show how a set of interpreters can

be composed with each other in parallel. This goal is significantly different from the theorem described in

Section 3.1.3.4.5. In hierarchical composition, the implementation of one interpreter model is the interpreter

from the other. In parallel composition, the two interpreters share a behavioral specification (i.e., interpreter

definition), and the implementation is two or more interpreters linked together. The interpreters can be

linked by shared state, common input, common output, and connections between the interpreters' inputs and

outputs.

Undoubtedly, as our theory of composition matures, the generic interpreter theory will change. The ad-

vantage of generic theories is that these changes can be made more easily in the generic theory than they

can in a specific definition of a VLSI device.
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3.1.6 Conclusions

This section has described the generic interpreter model. The theory isolates the temporal and data ab-

stractions of the proof inside the abstract theory. The theory also contains several important theorems about

the abstract representation. These theorems are true of every instantiation of the abstract representation that

meets the theory obligations. The theory has important benefits:

• The generic model structures the proof by stating explicitly which definitions must be made (one for each

of the members of the abstract representation) and which lemmas need to be proven about these defini-

tions (namely, the theory obligations). This is a substantial improvement over previous microprocessor
verifications where these decisions were made on an ad hoc basis.

• The generic model insulates users of the model from complex proofs about the data and temporal ab-

stractions. These proofs are done once and then made available to the user by instantiation.

• The use of a generic interpreter model for specifying and verifying microprocessors provides a method-

ologicai approach. Making specification and verification methodological is an important step in turning

what has been primarily a research activity into an engineering activity.

We have used the generic interpreter theory to verify a microprocessor, AVM-1, with a modem load-

store architecture [Win90a]. Other efforts to use the generic interpreter theory are underway. We believe

that our methodology makes microprocessor verification accessible by non-experts. We are testing our be-

lief by using the generic interpreter theory to introduce microprocessor verification to graduate students

with no previous verification experience [Coe92].

Based on our experience with AVM-I, we are confident that the generic interpreter theory makes mi-

croprocessor specification and verification significantly easier because of the structure that it entails and the

theorem reuse that it enables.

3.2 Using LINDA to Model Transactions

We have explored the use of LINDA, a language for expressing concurrency, to model the top-level

transactions of the PIU. LINDA is a coordination language which means that it does not contain a complete

set of language primitives, just those necessary for describing concurrent operations. When using LINDA

to model the PIU, the PIU, CPU, memory, and network are modeled as communicating in a common area

called tuple space. Figure 3.2 shows how this would look. In this model, the PIU reads to and writes from

tuple space along with the other devices in the system. We can think of tuple space as an abstract model of

the bus.

Our formalization was based on that of Butcher [But91 ]. Butcher's formalism was written in the spec-

ification language Z. Before we were able to mechanize the formalism, some of the Z constructs had to be

translated into HOL. Still, our mechanization is remarkably faithful to Butcher's.

After mechanizing LINDA in HOL, we conducted a simple case study to evaluate the appropriateness

of our model for reasoning about LINDA programs. We expressed the dining philosophers problem in LIN-

DA and then proved that the implementation did not deadlock.

Overall, the results of our experiment were negative. While LINDA readily expressed our solution to

the dining philosophers problem, reasoning about LINDA programs seemed to be extremely involved and

tedious. The are several reasons why this might be so, but they come down to a choice between: (1) our

mechanization is flawed and another mechanization would ease the reasoning burden or (2) LINDA is not

a good language for expressing coordination problems when reasoning about the solution is a priority.

Butcher's model, and hence our mechanization, are very similar to the intuition that LINDA programmers
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Tuple Space

Figure 3.2: Modeling the Buses in a Computer System using Tuple Space.

have about their programs and thus seem to be the correct model. Defining a different model would involve

creating a semantics for LINDA that differs considerably from the programmer's intuition. Thus, we have

concluded that, at least for the PIU project, a LINDA description of the top-level transactions is unworkable.

A technical report describing'our work in detail is forthcoming.

3.3 Transaction Modeling

The generic interpreter model is sufficient for describing the individual clock-level state machines of

the PIU, but not sufficiently flexible for describing the top-level transactions. The primary reason for this

lies in a design decision that is part of the generic interpreter theory and not easily changed.

In the generic intepreter theory, the abstractions that are done from one level of the interpreter hierarchy

to the next are assumed to be independent. In Section 3.1.2, we considered two types of abstractions--data

and temporal. For data abstraction of, for example, the state, we defined a function t_ : S' --4 S that maps

state at the concrete level to state at the abstract level and a function x : 1_1--_ 1_Ithat maps time at the abstract

level to time at the concrete level. Using these two functions, we denoted the abstract state stream in terms

of the concrete state stream, s', as t_ o s'o x. We were able to define these abstraction functions independent-

ly and then use them in combination with function composition to denote the abstract state stream.

The independence of data and temporal abstraction is a good assumption for non-pipelined micropro-

cessors and most state machines. The PIU, however, requires that the data and temporal abstraction be co-

dependent. To illustrate this, consider the following simplification from the PIU model that we performed
to test out ideas.

In our example, we view the P_Port of the PIU as a packet filter at two levels of abstraction. In the more

concrete level, which we call the microtransaction model, there are instruction packets and data packets that

must be transferred from the L_Bus to the I_Bus.

The data packets at the microtransaction level contain a data word and a byte-enable nibble for the fol-

lowing, if any, data word (i.e., four bits describing which bytes of the following data word are significant).

Instruction packets contain the memory instruction (RE,O,D,or WRITE), the block size (i.e., how many data
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Figure 3.3: Microtransactions on the P_Port.

packets follow in the case of a WRITE instruction or how many data packets are returned from memory in

the case of a READ instruction), and the byte-enable nibble for the first data packet. Thus, depending on the

content of the instruction packet, the microtransaction model transfers 0, 1, 2, 3, or 4 data packets.

At the more abstract transaction level, there is only one kind of packet sent for each complete transac-

tion. The packet contains fields for the memory instruction and block size identical to the instruction packet

at the microtransaction level plus four nibbles for the possible byte-enable information and four words for

the possible data words. For some packets (depending on the values in the instruction and block-size fields)

all of the byte-enable and data fields are empty and for others they are partially or completely full.

Figure 3.3 shows how the packets at the microtransaction level are abstracted to packets at the transac-

tion level. We view each packet at both levels as taking one unit of time, so between 1 and 5 time steps at

the microtransaction level collapse into one time step at the transaction level. This collapsing is not, in and

of itself, the issue. All microprocessor verifications collapse multiple time units into a single time unit at the

abstract specification level. What is different, however, is that we care about the information contained in

the data packets. In a verification where the data and temporal abstraction are independent, the information

at these intervening steps is unimportant at the abstract level and thus forgettable. The whole idea of the

predicate F in the function * (see Section 3.1.2.4) is that it defines precisely when we do care about the data
abstraction.

In our experiment, we defined an interpreter representing the behavior of the microtransaction level and

an interpreter representing the behavior of the transaction level. The models were done in terms of the packet

definitions given above. We were able to succesfully define an abstraction function on the input and another

abstraction function on the output that related the packet stream at the microtransaction level to the packet

stream at the transaction level. Using this abstraction, we verified that the transaction level interpreter rep-

resented a correct abstraction of the microtransaction level interpreter. The abstraction function performs

the data and temporal abstraction simultaneously.

The verification that we performed was general in the sense that it didn't specify what filtering opera-

tions occurred inside the P_Port. Any function that preserved the types inside the packet (memory instruc-

tion, n-bit words, and nibble) were allowed. However, the model was very specialized in terms of the packet

structure at the two levels. Changing either of the packet models would require that the abstraction functions
be rewritten.

We believe that relaxing the restrictions on the temporal and data abstractions completely would result

in a generic theory too general to be of any use. Semigroups are a good example of a theory that is too gen-

eral to be of much use. A semigroup has an associative binary operator on a type. Very few interesting the-

orems can proven about semigroups. Monoids are an enrichment of semigroups that add an identity element.
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Severalinterestingtheoremscanbeprovenaboutmonoids.Groupsareafurtherenrichmentof monoidsthat
addaninverseoperator.Thousandsof interestingtheoremshavebeenprovenaboutgroups.

Wehaveshownthatgeneralpurposemodelsarepossible,butintheabsenceof moreexampleswewere
unabletogeneralizethegenericinterpretertheoryto agenerictheorythatmixesthedataandtemporalab-
stractions.In manywaysweareinapositionsimilarto AvraCohn'sVIPERgroupbeforeourworkinmi-
croprocessorverification[Win90b].VIPER,aswehaveshown[Lev93],is verifiablebutwithoutagood
model,theproofcanbeverytedious.Attemptingto find thegenericinterpretertheorybeforetheVIPER
proofeffortsuggestedwhichproblemswereimportantwouldhavebeenshootingin thedark.

Thus,whatwehopetofind isagenerictheorymoregeneralthanthepresentgenericinterpretertheory,
butwithsufficientstructureto allowinterestingtheoremstobeprovenaboutit. Inparticular,if wecannot
proveacorrectnesstheoremfromourtheory,it isof little value.WehopethatfurtherworkonthePIUwill
yieldsufficientconcreteexamplesto yieldausefulgeneraltheory.

3.4 Pre-Post Interpreter Model

The generic interpreter theory was successfully used to model the PIU design, but as explained in the

last section it is currently unable to satisfy the abstraction needs of the PIU transaction level. In response to

this we conducted an investigation into new interpreter modeling approaches to satisfy the needs of our

immediate PIU modeling task. In this section we briefly discuss the selection of a new modeling approach,

the 'pre-post interpreter model.'

The pre-post interpreter model grew out of work, currently underway outside of this contract, to specify

fault-tolerant systems. We were looking for a model that would encompass a wide range of specification

levels, including those currently served by the generic interpreter theory, but also including higher levels.

In particular, we wanted a model that could represent a specification level comparable to a standard fault-

tolerant system reliability model, as well as a specification level above that.

One requirement that evolved for this modeling approach was that it treat abstraction in a manner com-

parable to the way that implementations are treated, i.e., as an explicitly assumed entitiy, rather than being

embedded within the interpreter correctness theorem (e.g., Section 3.1.3.4.4). The benefits of doing this for

fault-tolerant system modeling will not be described here--we will limit our discussion to the immediate

modeling problem.

After working with this model for a short time, it became evident that it had an advantage in the context

of PIU modeling in its flexible handling of abstraction. Since abstraction has been, and is still, a large part

of this task's research focus, flexibility in modeling it has become a significant risk reducer.

As discussed above, the generic interpreter model and its predecessors have generally been targeted to

state-transition systems without outputs and/or systems with relatively simple abstractions linking the lev-

els. We know of no application of these approaches to a problem comparable to our PIU modeling problem.

It is hoped that as we begin to better understand transaction-style systems, the generic interpreter theory can
be extended to cover them as well.

As the pre-post interpreter model is still at a fairly early stage of development, we will leave its full

description to a future report. Sections 4 and 6 of this report describe its application to the PIU design spec-

ification and requirements specification, respectively.
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4 Design Specification

This section describes the lower two levels of the PIU specification hierarchy (Figure 1.3), which con-

stitute the design specification. The discussion proceeds bottom-up, beginning with the gate-level specifi-

cation of the individual PIU ports.

The gate-level specification, described in Section 4.1, corresponds to the lowest-level design imple-

mented by the PIU design team. Below this level a silicon compiler provides the translation to the mask lay-

out used for chip fabrication. The specification effort described in this report is not concerned with this

translation, which currently falls within the domain of the tool vendor--Mentor Graphics Corporation.

Section 4.2 describes the clock-level specification for the five ports; Section 4.3 provides a concluding
discussion.

4.1 Gate-Level Structure

This section describes the elements of the gate-level structural specifications for the five PIU ports. Sec-

tion 4.1.1 discusses modeling components at the clock level of abstraction; Section 4.1.2 describes the the-

ories supporting the component definitions; Section 4.1.3 describes the components themselves.

4.1.1 Component Modeling at the Clock Level

Most hardware modeling work described in the formal-methods literature specifies the lowest-level

components used in the design at a level of abstraction equivalent to our clock level. However, the designs

described this way have been constrained in their use of sequentiai-logic components. For example, a com-

mon constraint is the use of only positive-edge-triggered flip-flops. The work described in this report could

not make use of the typical modeling approach because the PIU design is highly unconstrained in this way;

the design contains both positive- and negative-edge-triggered flip-flops and both phase-A- and phase-B-
enabled latches.

In our initial PIU modeling approach, described in an earlier report ([Fur92]), we addressed the uncon-

strained design style by modeling our components at the phase level, where a time tick corresponds to an

individual clock phase, rather than the entire 2-phase cycle. The high degree of fidelity provided by this

approach successfully solved the modeling challenges put forth by the PIU design. Unfortunately, the phase-

level approach had a number of disadvantages.

One problem with modeling at the phase level is the large size of the subsystem models there. In the 2-

phase clocking discipline used in the PIU, each edge-triggered component contains two level-sensitive

devices (i.e., latches). The phase-level model therefore has two state variables for every clock-level variable

that is implemented as an edge-triggered component. Since the number of state variables in a design is a

pretty good measure of overall proof complexity at the lower levels of the specification hierarchy, this is a

serious disadvantage.

In addition, the mere existence of a phase level represents additional work not necessary when clock-

level components are used, since, for the PIU it was still desirable to include a clock level. With the phase

level still in place the gate-level to clock-level verification would have required two steps rather than one.

Another problem with the phase-level approach is that composing the PIU ports at any level above the

phase level turned out to be tricky. From early on, our goal had been to perform port composition at the clock

level, and we did this using clock-level models that we abstracted from their phase-level counterparts. We

soon realized, however, that great care is necessary in doing this to avoid making mistakes. The problems
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withthisabstractionapproachweretwofold--firstthatit wasbeingperformedbyhand,andsecondly,that
anabstractiondefinedwithinagivenportsometimesdependeduponthedesignof adifferentport.

Anexamplethatillustratestheabstractionproblemisaportproducinganoutputvalueheldinaphase-
B-enabledlatchthatis readbyanotherlatchinanexternalport.Sincethesourcelatchisenabledonphase
B ratherthanA, itsvaluecanbedifferentdependingonwhen,duringtheclockcycle,it issampledbythe
destinationlatch.Theproblemis to decide,duringthephase-to-clockabstractionwithin thesourceport,
whichof thetwolatchvalues(the'current'valueversusthe'next'value)representstheclock-leveloutput
for theport.

If adestinationlatchinanexternalportsamplesitsinputduringphaseAthenthesignalit receivesmust
bethatproducedbythesourcecomponentduringphaseA. Thisis the 'current'valueof ourB-enabled
sourcelatch.If, ontheotherhand,thedestinationlatchsamplesduringphaseB,thenthe'next'valueshould
betheonereceived.Thus,in performingthephase-to-clockabstractionwithinthesourceport,it is neces-
sarytounderstandthedesignof thedestinationcomponentsin theotherports.

Thislackof contextfreedomis badenough,butevenworseisthepossibilitythatasystemwill contain
twodestinationlatchesforagivenB-enabledlatchthatarethemselveslatchedondifferentphases--Aand
B. In suchascenario,thereis noabstractionpossiblefor thesourcelatchthatdoesn'tcauseacomposition
error.Fortunatelyfor us,thissituationdoesnotoccurin thePIUdesign.

Ourultimatesolutiontotheseproblemsistoaccepttherealitythattwo different values can be tranmitted

during a given clock cycle in an unconstrained 2-phase-clocking design, and to model the clock level

accordingly. Our approach is to use a HOL 2-tuple to model clock-level signals. We define two accessor

functions ASel and BSel as aliases for the HOL functions FST and SND, and use the normal tuple constructor

"," to create signals. The clock-level components defined using this approach are described in the next sec-

tion.

4.1.2 Supporting Theories

Theories for arrays, n-bit words, and wired logic are described in this section.

4.1.2.1 Arrays

The PIU specification naturally makes heavy use of arrays to model the n-bit latches and registers in the

PIU design. HOL does not have a built-in array type, but arrays are easy to model in higher-order logic using

functions. In general we treat an array of objects as a function from the natural numbers to the same objects.

There are four basic operations on arrays in simulation languages that had to be defined in HOL: array index-

ing, array assignment, array subsetting, and subarray assignment. The definitions described here that per-

form these operations are part of our theory array_def.

Array Indexing. In simulation languages, arrays are indexed using bracket notation. In HOL, since

arrays are just functions, arrays can be indexed by function application. Our approach is to use a function

ELEMENT that operates on an array and an index and returns the value of the array at that particular index.

Thus, a simulation-language term x[i] is written in HOL as ELEMENT x i.

Array Assignment, In simulation languages, one can use an indexed array variable as the Ivalue in an

assignment statement. Logic does not have assignment, so the corresponding definition is functional. We

define a function called ALTER that operates on an array, an index, and a value and returns a new array with

the value stored in the array at the index given. All other values are unchanged. Thus, a term x[q - y is written

(ALTERx i y) in HOL.
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Array Subsetting. In simulation languages, one can use a subarray in an expression. The HOL function

SOBARRAY serves the same purpose. Thus, a simulation term x[lS:5] (which represents an 11-element array

with location o holding the same value as x[5], location 1 holding the same value as x[6], and so on) would

be written in HOL as SUBARRAYx (15,5).

Subarray Assignment. In simulation languages, one can assign arrays to portions of an existing array.

The HOL function that does this is called MALTER.The term x[15:5] = y, would be written in HOL as MALTER

x (15,5) y.

The theory of arrays also contains theorems pertaining to these definitions that aid in reasoning about

arrays.

4.1.2.2 N-Bit Words

N-bit words are defined in simulation languages using arrays of booleans. Since we represent arrays as

functions, the natural representation for n-bit words is a function from the natural numbers to the booleans.

The theory of n-bit words that we defined uses this representation and makes definitions that allow the rep-

resentation to be usable. There are four kinds of definitions in the n-bit word theory contained in the theory

wordn_def:
1. Definitions that

2. Definitions that

3. Definitions that

interpret the meaning of an n-bit word.

create n-bit words with special meanings and give them names.

test an n-bit word for a given property.

4. Definitions that operate on n-bit words.

There are two major functions for interpreting n-bit words: VAL and WORDN. VAL returns the numeric

value of an n-bit word. WORDN returns the n-bit word representing a given number.

I-&/ (VAL0f = bv(f0)) A
(VAL (SUC n) f = ((2 EXP (SUC n)) * (bv (f (SUC n)))) + VAL n f)

where: I-d# bvb = b =_> 1 I 0

I-,_f WORDNnx = _.m. (m_n) _ ((xDIV(2EXPm))MOD2=I) I ARB

There are a number of functions for creating special n-bit words. We will not discuss all of them here,

but only give a few examples. $ETN returns an n-bit word with all of its bits set. Similarly, RSTN returns an
n-bit word with all of its bits false.

I-def SETN x = _. n. (n <_x) ==>T I ARBI-_ef RSTNx = _.n. (n___x)=:_ F I ARB

Examples of test predicates include ONES, which tests if all the bits in a word are true, and ZEROS,
which tests if all the bits in a word are false.

I-,_f (ONES0a = (a0)) ^
(ONES (SUC n) a = (a (SUC n)) A (ONES n a))

I-_f (ZEROS0a = -_(a0)) A
(ZEROS (SUC n) a = -_ (a (SUC n)) ^ (ZEROS n a))
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Operations on n-bit words implement the common boolean and arithmetic operations. For example,

NOTN returns the n-bit complement of a word. INCN returns the n-bit word resulting from adding 1 (modulo

n) to its argument.

l I-_/. NOTNxf = _.n. (n<x) _ -_(fn) I ARB l

I

l-,_f INCN n f = (ONES n f) =_ RSTN n I WORDN n ((VAL n f) + 1) I
So far, the theory contains a few theorems regarding these definitions and their relationship to one

another that have been proven as they were needed in the PIU verification.

4.1.2.3 Wired Logic

Our approach to modeling the outputs of tri-state drivers uses a 4-valued logic combined with explicit

bus models for the interconnect nodes. The theory busn_defcontains definitions and some useful theorems

for 4-valued logic; the theory buses_defcontalns definitions for the bus models themselves.

Our initial approach for modeling tri-state driver outputs was to employ the predefined HOL entity ARB

to represent both the unknown value (usually denoted X) and the high-impedance value (usually denoted

Z). The rationale for doing this was to avoid having to define all of our low-level components in terms of a

4-valued logic, which would severely complicate both modeling and verification.

This approach didn't work however. Although we could define interpreter outputs effectively, interpret-

ing these values as inputs caused problems. The major problem was the inability to reason with high-imped-

ance values assigned the value ARB. In the node interconnect models discussed below, it is necessary to

distinguish a value of high impedance from a value of true, for example. However, ARB is a truly arbitrary

value that is not comparable with the value 'true' (i.e., one cannot prove _ (ARB = T)).

4-Valued-Logic Datatype:

The theory busn_defprovides the definition for a new HOL datatype ":wire" containing the four enu-

merated values HI, LO, X, and Z, representing logic-true, logic-false, unknown 1, and high impedance, respec-

tively. The type ":bush" is used for n-bit words of type wire.

The theory busn_defcontains the type conversion functions that would be expected for this datatype.

For example, the function WIRE converts a boolean type signal to its type-wire counterpart; booWAk per-
forms the inverse:

I-_,/ WIRE b = (b = T) _ Hit LO.
l-,k! boolVALw = (w=HI) =_ T l

(w= LO) :=_ F I ARB

Corresponding functions, BUSN and wordnVAL, are defined for n-bit words.

1. We use 'unknown' here because of its standard use this way. However, this value is better thought of as an
'illegal' value, since a true 'unknown' value could not be proven to be neither HI,nor LO, norZ as, in fact, X

can be proven. The HOL entity ARB is really the 'unknown' value for this type, as it is for others.
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Somespecial-purposepredicatesaredefined as well. For example, ONP and OFFP have the meanings

implied by their names:

I I-de/ ONP w = ((w = HI) V (w = LO) v (w = X)) ]

I

I-,_f OFFP w = (w = Z) I
The theory busn_defalso provides some simple, but useful, theorems relating the above data types and

the predicates defined for them. Two typical examples are shown here:

boolVAL_WIRE_IDENT: I- V b:bool, boolVAL (WIRE b) = b

ONnP_BUSN: I" V (f :wordn) (m n :num). ONnP (BUSN f) (m, n) = T

Node Interconnect Models:

In most cases the behavior of component interconnections can be safely modeled as an identity function,

with no need for an explicit node model. In the case of wired logic, however, more complicated behavior is

involved that requires increased modeling attention.

In general, when two or more gate outputs are wired together the signals they produce should be mod-

eled using a multi-valued-logic data type, such as the ":wire" type. However, the use of our 4-valued logic

throughout a design specification significantly increases both the complexity of the models and the difficulty

of the proofs. In our PIU specification models we avoid this problem, while faithfully modeling wired-logic

nodes, by restricting the use of 4-valued-logic to only the nodes that require it--the majority of the specifi-

cation uses boolean-valued signals.

As described below, tri-state buffers map inputs of type ":bool" (or ":wordn") to outputs of type ":wire"

(or ":busn"). Node interconnect models receive as inputs the values produced by tri-state buffers and return

boolean-valued signals. They are the key to localizing 4-valued logic to wired nodes.

The theory buses_defcontains several node-interconnect models. The following definition is for an n-

bit bus sourced by two tri-state drivers:

Ioa_f JOIN2n_GATE (m,n) (InD1 inD2 :busn) (out :wordn) =
V t:time.

out t =

(((Bus2n_CF (m,n) (inD1 t) (inD2 t))
(ONnP (ASel(inD1 t)) (m,n)) :=> wordnVAL(ASel(inDl t)) I
(ONnP (ASel(inD2 t)) (m,n)) =:> wordnVAL (ASel(InD2 t))

I wordnVAL (Offn)
I ARBN),

((Bus2n_CF (re,n) (inD1 t) (inD2 t))

=> (ONnP (BSel(inD1 t)) (m,n)) ==_ wordnVAL (BSel(inD1 t)) I

(ONnP (BSel(inD2 t)) (re,n)) => wordnVAL (BSel(inD2 t))

[ wordnVAL (Offn)
I ARBN))

The node model has two n-bit inputs of type ":busn" (inD1 and inD2) and a single n-bit output, of type

":word" (out). The inputs m and n define the upper and lower bounds of interest, respectively, within the n-

bit array.
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ThepredicateBus2n_CE when true, indicates that no conflicts exist for the node, i.e, at most one of the

two tri-state drivers is driving onto the node.

I-d,./- Bus2n_CF (m,n) inD1 inD2 =

let offal = OFFnP (ASel inD1) (m,n) in
let offa2 = OFFnP (ASel inD2) (rn,n) in
let offbl = OFFnP (BSel inD1) (re,n) in
let offb2 = OFFnP (BSel inD2) (m,n) in
(((-_offal) =_ offa2 I T) A
((-_offbl) =* offb21 T))

4.1.3 Components

Example combinational- and sequential-logic components are described in this section.

4.1.3.1 Combinational Logic

The PIU specification requires only a few inverters, AND gates, OR gates, and buffers from the silicon

compiler component library. The HOL models for these gates axe contained in the theory gates_deft. The

models for a 3-input AND gate and for a tri-state buffer are shown here.

I-def AND3_GATE a b c z = V"t:time, z t =

I-def TRIBUF_GATE a e z = V t:time, z t =

((ASel (a t) A ASel (b t) A ASel (c t)),
(BSel (a t) A BSel (b t) A BSel (c t)))

((ASel (e t) :=:> WIRE (ASel (a t)) I Z),
(SSel (e t) :=:> WIRE (SSel (a t)) I Z))

Both of these definitions reflect the 2-tuple modeling of clock-level signals discussed in Section 4.1.1,

which adds some complexity.

4.1.3.2 Sequential Logic

A variety of latches and flip-flops were used in the PIU design. The following two definitions, for a B-

phase latch and a negative-edge-triggered flip-flop, demonstrate the clock-level modeling style used for

these components.

I-d,f DLatB_GATE d s q : V t:time.

I-d,/ DFFB_GATE d s q : V t:time.

(s(t+l) = BSel(dt)) A

(qt = (st, s(t+l)))

(s (t + 1) = ASel (dt)) A
(qt : {st, s(t+l)))

4.2 Clock-Level Behavior

The pre-post interpreter model, introduced in Section 3, was used to specify the PIU clock-level design.

We describe the elements of the model as they are used to define the various pieces of the clock-level spec-

ification. We present as a concrete example portions of the specification of the P_Port.
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PCSet_Correct is a predicate characterizing the behavior of the entire P-Port instruction set, in terms of

the individual-instruction predicate PC_Correct:

I I-`1d- PCSet_Correct s' e' p' = V pci t'. PC_Correct pci s' e' p' t' I

The variable pci represents the instruction under consideration. At this level there is only one: PC_X. The

variable t' represents clock-level time, where each increment corresponds to a single clock cycle. The vari-

ables s', e', and p' represent signals mapping clock-level time to clock-level state, input, and output, respec-

tively.

From its definition PCSet_Correct is seen to be true (for all s', e', and p') if and only if PC_Correct is true

for all instructions pci and all time t' (and all $', e', and p' as well). PC_Correct is itself defined in terms of

the instruction execution predicate PC_Exee, the instruction precondition PC_PreC, and the postcondition

PC_PostC:

I-,t,,I. PCCorrect pci s' e' p' t' PC_Exec pci s' e' p' t' A
PC_PreC pci s' e' p' t'

PC_PostC pci s' e' p' t'

This predicate is read as "for all instructions pci arid all time t' (and all s', e', p'), if pci is executed at t' and

if the precondition is true for pci at t', then the postcondtion for pci is true art'. This defines instruction cor-

rectness for individual instructions at single points in time.

The execution, precondition, and postcondition predicates are defined as follows:

I-`1,/- PC_Execpcis'e'p't' = T
I-`1,/- PC_PreCpcis'e'p't' = T
I-`1,f PC_PostC pci s' e' p' t' = (s' (t'+l) = PC_NSF (s' t') (e' t')) A

(p' t' = PC_OF ($' t') (e' t'))

PC_Exec is universally true since there is only one insU'uction for this level and it is executed every

cycle; PC_PreC is also true, indicating that no special preconditions are necessary here. The pre-post inter-

preter model is an overkill in this situation--a simple finite-state machine model would suffice.

The postcondition PC_PostC provides the definition for correct clock-level behavior in terms of the

next-state function PC_NSF and the output function PC_OF. Both of these functions take as inputs the current

state (s' t') and current inputs (e' t'), and return the next-state and output, respectively. Each is much too long

to include here however; the interested reader is referred to [Fur93b].

4.3 Discussion

The PIU design specification was a relatively straightforward effort. The specification was completed

as part of Task 9, but during this Task 10 we modified the gate-level models by converting them from the

phase level to the clock level. We also converted our bus models to a 4-valued-logic implementation. Alto-

gether, this work represents less than one month of effort, and was a net time-saver because it eliminated the

need for a phase-level verification.

However, when including the Task 9 work, the design specification job required a large effort and the

resulting models contained several errors that were uncovered during the subsequent verification. We
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believethatfutureworkcanbenefitgreatlyfromourexperienceontheclock-levelspecificationandthever-
ificationworkthatfollowedit. Theremainderof thissectiondiscussestwoareaswherefutureworkshould
be targeted to make clock-level specification a practical activity. The first is the automated generation of

gate-level models. This is followed by the automated generation of clock-level models.

4.3.1 Generation of Gate-Level Models

A high priority for any future work is the automated generation of HOL gate-level specifications from

the implementation descriptions (simulation models or netlists). It should be relatively straightforward to

construct a translation program to do this based purely on the structural information contained within the

description. Even a translation not based on a formal semantics is extremely important in helping make the-

orem-proving-based verification a practical activity, as well as helping to ensure the accuracy of the lowest-

level specification model.

4.3.2 Generation of Clock-Level Models

The automated generation of clock-level models from the gate-level specification should also be pur-

sued. There is a systematic way to do this, using the lot construct of the HOL logic to define the intermediate

signal values present on the circuit's internal nodes. In fact, this is similar to the manual procedure that we

used to create the clock-level models for the PIU. Figure 4.1 demonstrates the idea. It shows an example

circuit structure in part (a) along with its behavioral representation in part (b). The behavior is represented

as a function, in a manner compatible with both the pre-post interpreter model and the generic interpreter

model.

,o1 
In2

In3

1114

(a) Example Circuit.

out

I"_.t" out_function In1 in2 in3 in4 ,,

let a ,, -_ (in1 ^ in2) In

let b ,, -_ (In3 ^ In4) in

letc,,-_(a ^ b) In
let out ,, -_ c In
out

(b) Corresponding HOL Function.

Figure 4.1: Correspondence Between an Example Structure and its Behavioral Definition.

As in this figure, the procedure for constructing clock-level models works with internal nodes at the out-

puts of logic gates whose inputs are already defined, either because they are system inputs, current state val-

ues, or previously defined within a let construct. In practice, this is done twice - once to construct the next-

state function and once for the output function.
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5 Processor Port Description

To prepare the reader for the discussions in Section 6, we describe in this section the design of the Pro-

cessor Port (or P_Port) of the PIU. We focus on the P_Port because it is the subject for the transaction-level

specification descriptions of Section 6.

The circuit diagram for the P_Port is shown in Figure 5.1. As evident from the figure, the design is a

highly-distributed structure containing many primitive components. As explained in [Fur92], to simplify the

specification we have grouped certain sections of random logic into single behavioral models. This also

speeds the verification somewhat. For example, there is an HOL definition, Req_lnputs, that defines the

behavior of the group of combinational logic indicated in the figure. All of these definitions are contained

in [Fur93b].

The figure contains several blocks that are likely to be unrecognizable to most readers. Aside from the

normal logic primitives (NAND gates, etc.), Figure 5.1 contains latches, a counter, and a finite-state

machine (FSM). Most of the non-logic elements are D-type latches. They are clocked on either phase A (A)

or phase B (B) of the clock cycle, and some contain an additional enable input (E), set input (S), and/or reset

input (FI).

The Ctr_Logic group contains a 2-bit counter that loads in a new value when the input LD is high and

counts down, under the control of the ON input, otherwise. The FSM_Gate block is a 3-state FSM that con-

trois the P_Port operation.

The shaded blocks indicate state-holding devices (again, usually latches). The names adjacent to these

blocks, beginning with P_, are the state variables of the P_Port. The P_Port inputs and outputs are, for the

most part, shown at either the extreme left or extreme right in the figure. Those variables beginning with an

' L' are Intel 80960 L_Bus variables, while those with an' I_' are PIU I_Bus variables. The variables Rst,

A, and B, contained throughout the figure, are the reset, clock phase A, and clock phase B, respectively. The

other variables represent P_Port internal nodes.

5.1 P_Port Operation Overview

The P_Port processes memory-access transactions sourced by the active local processor of the PMM

(Figure 1.1). Transaction requests are received over the L_Bus and relayed onto the IBus. The information

contained in a transaction includes the memory address, a read/write control bit, a block of (up to four) data

words, a corresponding block of byte enables, and a lock bit. These are explained below.

L_Bus transaction requests are defined by the arrival of a low Lads_ and a high L_don_. As seen in the

Req_Inputs group, this corresponds to a high ale signal value, which should set the P_relt latch. The P_Port,

in turn, transmits an I_Bus request using the output signals Imale_, I_mle_, I_¢ale , and I_hlda_.

An IBus request is defined as the combination of a high I_hlda_ and one of I_trmle_, I_tale_, or I_eale_

being low. The high I_hlda_ indicates that the P_Port, rather than the C_Port, is the current master of the

I_Bus. The other three signals distinguish the memory-request target: local memory, PIU register file, or

Core Bus, respectively.

Upon the arrival of an L_Bus transaction request, the P_Port also receives the memory address, the first

set of byte enables, and the read/write bit. The P_Port latches these values, under the control of the P_rqt

latch. For example, bit 31 and bits 25 down to 0 of the address (L_Bus signal L_,,d_in) are loaded into a latch

within the Data_Latches group. The latch enable is the inverted P_relt value. In its intended operation, the

larqt latch should be low upon the arrival of the request, enabling the address to be latched. On the cycles

following the request however, the P_rqt latch should be high to prevent further address loading. The byte
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Figure 5.1: Circuit Diagram for the PIU Processor Port (P_Port).
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enables (on L_be_[3:0]) and read/write bit (on L_wr) are handled in the same way. The lock bit (on L_lock_)

also arrives during the transaction-request cycle, but is treated differently, as explained below.

Understanding the P_Port's operation requires understanding the P_Port's FSM, which is described in

Figure 5.2. As seen in part (a), the FSM state variables include what might normally be thought of as FSM

'inputs' (P_fsm_rst through P_ism_lock_), in addition to what is normally considered the 'state' (P_ism_-

state). To accurately model the FSM's behavior however, it is necessary to define state variables for all of

these phase-B-clocked values.

f
_::_ P_fsm_mt

_ P_hlm_mrqt
.... P_fsm_sack

_ P_f_m_crqt_P_fsm_cgnt_

_ P_fsm_hold_
P_fsm_lock_

combinational

logic

(a) Structure.

J

a_state

d_state

hlda_

mrqt '¢ (--¢rqt_ ^ --¢gnt_)
a_state d_state

-' .ok^ (.o,,_ (-,o,,_̂

\\

-_hold_ A lock_ A ___ sack A "--,hold_ A lock_

_(mrqt v (-¢rqt_ m -¢gnt_))

--,hlda_

(b) Behavior.

Figure 5.2: P_Port FSM Description.

Part (b) of the figure shows the FSM behavior. In the diagram, the input variable names are abbreviated

versions of the corresponding latch variable names. We distinguish between these values, contained within

the phase-B-clocked latches (such as P_fsm_rst - abbreviated rst), and the external signals (such as Rst).

The latched values are the external signals delayed one cycle; for example, P__fsm rst at time t+l is equal to

Rst at time t. The equations attached to the transitions define the conditions for taking the transition. The

active output signals are denoted at the states, with the understanding that it is the next state that is being

indicated here, rather than the current state, l For example, the output a_state is high when the next state is

PA (the address state). The outputs d_state and hlda_ are similar, except that hlda_ is active low.

As seen from the state machine, a P_Port reset (Rst high) moves the FSM into state PA. While in PA,

one of two events can change the state. One such event is the P_Port's gaining mastership of the PIU's

I_Bus, which moves the FSM into the data state (PD). The input-state mrqt is high if the previous cycle saw
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thearrivalof anL_BustransactionrequesttargetingeitherthelocalmemoryorPIUregisterfile.Notefrom
Figure5.1thatthiscorrespondsto amost-significantaddressbit (P_destl)of logic-zero.Theinput-state
erqt_is active-lowif theC_Buswasinsteadtargeted,in whichcasetheP_PortgainsI_Busmastershiponly
aftertheC_PortacquirestheC_Busandhasreturnedanactive-lowI_egnt_toindicatethis.

ThePA state is also exited when the C_Port requested the l_Bus on the previous cycle (hold_ is low)

and the P_Port did not receive a simultaneous L_Bus transaction request, nor is the P_Port in the middle of

an atomic read-modify-write operation (lock_ is high). If these conditions are met then execution moves into

the hold state (PH).

The need to arbitrate for the I_Bus makes the P_Port design an interesting verification test case. It also

explains the need for P_Port latching of the address, and other L_Bus inputs, as described earlier. These

L_Bus signals are only valid during the first cycle of the transaction.

Continuing on with the FSM description, the PH state is seen to be exited upon the arrival of an inactive-

high I_hold_ signal during the previous cycle (input-state hold_ is high). An obvious requirement on the

C_Port then is that it eventually release the I_Bus in this way; otherwise the P_Port would remain trapped

in the PH state. Note that while in the PH state the I_Bus control signals sourced by the P_Port (l_male_, etc.)

are tri-stated. They are driven during this time by the C_Port.

The PD state is exited when the FSM input-state variable sack is high. This event occurs when the local

signal sack, in the Scat_Logic group of Figure 5.1 (not to be confused with the internal-FSM sack), is high

during the previous clock cycle. The combination of two events must occur for this to happen. First, the

I_Bus slave port must be transmitting an active-low I__srdy_ signal, indicating the slave's successful han-

dling of the current data word. For write transactions, this means that the slave has finished storing the word,

while for reads it indicates that the slave is currently driving the data word onto the Lad_in signal lines.

I_srdy_ is transferred onto the L_Bus as L_rendy_.

An active-high sack also depends upon a P_size value of zero, which corresponds to an active-high Z

output from the counter within the Ctr_Logic group. Such a value indicates that the current data word being

processed is the last word of the block. The counter is initially loaded with the block size received over the

L_Bus as pan of the address (i.e., L_ad_in[1:0]). After each word of the block is processed (and a low I_srdy_

is received) the counter is decremented, as indicated in Figure 5.1. The counter Z output is transmitted to the

slave port as I_last to inform it of the completion of the block. This is used by the slave in lieu of the block

size bits transmitted as I ad out[25:24] to eliminate the need for the slave to itself count down.

The hardware at the lower left corner of Figure 5.1 implements P_Port 'memory locking' to support

atomic read-modify-write memory operations. There are two aspects to this, affecting the P_Port FSM and

affecting the I lock_ signal that is sent to the C_Port.

The P_Port FSM receives its lock input from the P_lock_ latch, which is intended to contain the up-to-

date version of the k_lock_, input sourced by the Intel 80960. During the 'read' portion of an atomic opera-

tion, L_lock_ is made active low by the 80960 and left low until after the corresponding write access is

started. As seen in Figure 5.2, while P_fsm_lock_ is low the FSM will not transition into the PH state, mean-

ing that it will not relinquish the I_Bus to the C_Port. In this way, the P_Port can successfully implement

atomic operations to the local memory and PIU register file.

The remaining 'memory lock' hardware implements the generation of the I_lock_ output. Although this

appears somewhat complicated, this logic merely ensures that I_lock_ is brought low only on atomic oper-

ations to the C_Bus, and not to the local memory and the PIU register file. The C_Port uses this signal much

1. It is a coincidence that the FSM outputs and next state are correlated in this way. This FSM can be viewed
as a normal Moore-type machine, meaning that the output is a function of the current state, except that we
consider all of the phase-B-clocked variables to be partof the state, rather than just P_fsm_stJle. We call the
other phase-B variables 'input-states' in recognition that their inputs are from outside the FSM.
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astheP_PortusesL_loek_;whenit receivesanactive-lowvalueit maintainsownershipof theC_Busuntil
it is releasedbyaninactive-highvalue.

5.2 HOL Variables

The P_Port state, input, and output data structures are defined in HOL using the function define_type

from the standard type definition package. Individual elements of these structures are accessed using func-

tions defined with the new_reeursive_definition function. These definitions are contained in [Fur93b]. In this

section, we list the individual state, environment (input), and output variables to support the discussions in

Section 6.

We use the variables s', e', and p' to represent the clock-level state, environment, and output, respec-

tively. Each of these variables is a 'signal,' meaning that it is a function, mapping time (with type :time') to

its appropriate data structure. The type :time' is an abbreviation for the HOL type for natural numbers

(:num). For example, the state signal s' has the type :time'-->pc_state, and the application of this signal to a

particular point in time (e.g., (s' t')) yields the data structure for the state (with type :pc_state). Table 5.1 con-

tains the individual state variables of the P_Port defined using accessor functions operating on the state data

structure (,' t'). For example, P_addrS (s' t') represents the value of the P_addr latch of Figure 5.1 at time t'.

As explained in Section 4, the type :wordn is an HOL type representing n-bit (boolean) words. The type :wire

is a 4-valued-logic type with the values HI, LO, X, and Z, representing high, low, unknown, and high imped-

ance, respectively; :busn represents n-bit words of type :wire. The type :pfsm_ty contains the values PA, PD,

and PH, representing the FSM state. Table 5.1 also contains the environment and output variables defined in

a corresponding way. As explained in Section 4, the environment and output variables are HOL 2-tuples

representing the two values contained within an individual clock cycle (one for phase A and one for phase

B).

Table 5.1: P_Port HOL Variables and Their Types.

State Environment Output Type
Variable Type Variable Type Variable

P_addrS (s' t') :wordn RstE (e' t') :bool#bool L_ad_outO (p' t') :busn#busn

P_dutlS (s' t') :bool Lad inE (e' t') :wordn#wordn L_ready_O (p' t') :bool#bool

P_be_S (s' t')

P_wrS (s' t')

P_fsm_stateS (s' t')

P_flm_rstS (s' t')

P_Mm_mrqtS (s' t')

P_fsm_lackS (if' t')

P_fsm_crqt_S (s' t')

P_ftm_cgnt_S (s' t')

P_fsm_hold_S (s' t')

P fsm lockS (s' t')

P_rqtS (s' t')

:won:In

:bool

:plsm_ty

:bool

:bool

:bool

L_ads_E (e' t')

L_den_E (e' t')

L_be_E (e' t')

L_wrE (e' t')

L_Iock_E (e' t')

I_ad_lnE (e' t')

:bool#bool

:bool#bool

:wordn#wordn

:bool#bool

:bool#bool

:wordn#wordn

I_ad_outO (p' t')

t_be_O (p' t')

I_rale_O (p' t')

I_male__O (p' t')

I_crqt_O (p' t')

I cale_O (p' t')

:busn#busn

:busn#busn

:wire#wire

:wire#wire

:boolroool

:bool#bool

:bool l_cgnLE (e' t') :bool#bool l_mrdy_O (p' t') :wire#wire

:bool l_hold_E (e' t') :bool#bool l_last_O (p' t') :wlre#wlre

:bool l_srdy_E (e' t') :booliroool l_hlda_O (p' t') :bool#bool

".bool

:bool

tJoek_O(p' t') :bool#bool
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Table 5.1: P_Port HOL Variables and Their Types.

State
Variable Type

P_sizeS (s' t') :wordn

P_loadS (s' t')

P_downS (s' t')

P_lock_S (s' t')

P_lock_lnh_S (s' t')

P_male_S (s' t')

P_rale_S (s' t')

:bool

:bool

:bool

:bool

:bool

:bool

Environment Output
Variable Type Variable Type

54



6 RequirementsSpecification

Section 4 described the models used to specify the PIU at the two lowest levels of the specification

hierarchy in Figure 1.3. In this section, we focus on the top-most levels in the hierarchy: (1) the PIU trans-

action-level behavior, (2) the port transaction-level behavior, and (3) the abstraction between the clock

level and the transaction level.

Of the four classes of PIU behavior described in Section 1, work on the P Process has proceeded the

farthest. Again, the P Process describes the handling of memory accesses initiated by the local PMM pro-

cessor. The descriptions in this section all make use of examples taken from the P-Process specification.

Section 6.1 describes the transaction level through the perspective of the data that flow between the

PIU ports. As explained in Section 2, these data are grouped into structures called 'packets.'

Section 6.2 describes the interpreter models used for the PIU specification and the individual port spec-

ifications. Examples are taken from the actual PIU and P_Port specifications.

Section 6.3 describes the abstraction predicates that relate the variables of the clock level and the trans-

action level. Examples from the P_Port specification are used to illustrate the key ideas here.

Section 6.4 provides a concluding discussion.

6.1 Input/Output Packet Perspective

The PIU P Process is readily understood in terms of packets that travel between the PIU and its envi-

ronment, and between the individual ports of the PIU itself. Section 6.1.1 describes the packets that travel

between the PIU and its environment: the local processor, local memory, and C_Bus. Section 6.1.2

describes the packets that travel among the ports of the PIU.

6.1.1 PIU Level

In the P-process view of PIU behavior, the PIU is fundamentally a processor of memory-access

requests initiated by the local PMM microprocessor. Figure 6.1 describes this behavior in terms of the

packet inputs and outputs. As seen in the figure, packets axe exchanged with the local processor (on the

right), the local memory (on the left), the C_Bus (on the bottom), and the FTCU (from the top).
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Figure 6.1: Packet Input/Output Perspective of the PIU P Process.

The packet fields contain the information implied by their names (except, perhaps, for the opcode fields

described below). Tables 6.1 and 6.2 show the data types for the fields of two typical packets: the PBM

packet sourced by the local processor, and the PBS packet returned to the processor. The fields of these

packets are dictated by the bus protocols of two microprocessors targeted by the FTEP computer: the Intel

80960 family [Int89] and the MIPS R3000 family [Kan87]. But they are applicable to other microproces-
sors as well.

Table 6.1: Example Field Descriptions for a Master-Sourced Packet (for PBM Packets).

Type

Opcode {PBM_WriteLM, PBM_WritePIU, PBM_WriteCB, PBM_ReadLM,

PBM_ReadPIU, PBM_ReadCB, PBM_Illegal }

Address array [29:0] of bool

Data array [3:0] [31:0] of booi

Block Size array [1:0] of bool

Byte Enables array [3:0] [3:0] of bool

Lock bool
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Table 6.2: Example Field Descriptions for a Slave-Sourced Packet (for PBS Packets).

Field Type

Opcode {PBS_Ready, PBS Illegal }

Data array [3:0] [31:0] of bool

As seen from the tables, some fields contain a single value while others contain more--up to four, cor-

responding to the maximum block size of the two targeted microprocessors. In transactions requiring fewer

than the maximum number of values, the unused slots are considered to hold arbitrary, unspecified values.

Most packet fields have a close correspondence to similarly-named counterparts within the micropro-

cessor data sheets. The address and data fields contain the information suggested by their names. The

block-size field defines the number of data words to be read or written. The byte-enable field defines which

bytes within the four words are to be replaced on writes. The lock field is used by the lntel 80960 to specify

whether the current transaction is part of an atomic read-modify-write operation.

The opcode fields are somewhat different in that they have no direct counterparts described in a typical

microprocessor data sheet. Instead these fields abstract the specifications of the low-level control signals,

including those implementing the handshaking protocol, arbitration policy, and output driver enabling. For

example, the opcodes for the PBM packet describe (abstractly) the correct behavior of the I._ads_, I._den_,

t._wr, and I. nd in clock-level signals of Figure 5.1. In turn, the PBS opcode defines the behavior for the

L_ready_ and L ad out signals.

The transaction opcodes are related to these low-level signals through their associated abstraction pred-

icates, as described in Section 6.3. For the current discussion, it is sufficient to understand that a PBM

opcode that is not PBM_lllegal represents a scenario in which the local processor is correctly implementing

its portion of the bus protocol. Likewise the PIU is satisfying its part of the bus protocol when it transmits

an opcode of PBS_Reedy.

As seen in Table 6.1, there are six types of legal transactions initiated by the local processor: reads and

writes to each of the local memory, PIU register file, and C_Bus. For a read operation to the local memory,

for example, the PIU generates an MBM packet with opcode MBM_ReadLM, and other fields filled appro-

priately. It receives an MBS packet back containing the data block, which it then packages up as a PBS

packet for the local processor. All of these transmissions occur within a single cycle of a finite-state
machine model of transaction behavior.

The only packet in Figure 6.1 not directly involved in data transmission is the ERM packet sourced by

the FTCU. The opcode of this packet defines the behavior of the Reset input received by the SU_CONT

block of the PIU. An opcode of ERM_NoReset represents the normal processing case where the Reset signal
is inactive low.

6.1.2 Port Level

Figure 6.2 shows the PIU transaction-level structure. The lines connecting the ports all represent packet

data paths. Those crossing the PIU boundary are the same as the data paths of Figure 6.1.

Internal to the PIU, the SU_Cont sources 'reset' packets to all four of the other ports. The I_Bus spec-

ification is the transaction-level abstraction of a clock-level bus model, similar to those described in Section

4. As seen in the figure, it interconnects all four of the ports residing on it. The point-to-point connections

between the P_Port and C_Port carry bus-arbitration packets. These packets are explained in more detail
below.
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Figure 6.2: Transaction-Level Structure of the PIU.

Figure 6.3 shows the packet input/output data flow for the P_Port. The P_Port's major function is to

process packets received from the L_Bus and pass them on to the I_Bus. The L_Bus packets shown in this

figure are the same as those in Figure 6.1. The IBM (for I_Bus master) packet sent to the l_Bus is virtually

identical to the received PBM packet--the only difference is in the stripping off of the Lock_ field. The IBS

packet received from the I_Bus is similarly passed through to the L_Bus unchanged.

The IBAM (for I_Bus arbitration master) packet sent to the C_Port represents the P_Port's implemen-

tation of the l_Bus arbitration protocol. An opcode of IBAM_Rondy represents the P_Port's correct imple-

mentation of the protocol. The IBAS packet received from the C_Port represents its implementation of the

slave portion of the arbitration protocol, with an opcode of IBAS_Ro_Iy indicating a correct implementa-

tion. The meaning of these concepts at the clock level is described in Section 6.3.

The RM packet received from the SU_Cont is similar to the ERM packet received by the PIU (by the

SU_Cont). The RM packet is an internal version that has been processed by the SU_Cont. An opcode of

RM_NoReset indicates that the SU_Cont is not resetting the P_Port.
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Figure 6.3: Packet Input/Output Perspective of the P_Port.

Figure 6.4 shows the transaction-level input/output behavior of the I_Bus. As seen here, the I_Bus, as

expected, interfaces the four ports residing on it. It passes to the R_Port, MPort, and C_Port the IBM

packet it receives from the P_Port. Based on the slave packets received from these three ports, the I_Bus

passes an IBS packet to the P_Port.

The other ports have similar data flow.
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Figure 6.4: Packet Input/Output Perspective of the l_Bus.

6.2 Interpreter Definitions

This section describes the interpreter models used to define the transaction-level behavior. Subsection

6.2.1 describes the PIU-level model and Subsection 6.2.2 covers the port-level models.

6.2.1 PIU Level

The PIU P Process is implemented using the pre-post interpreter model that was briefly introduced in

Section 3.4. The instruction set for the P Process contains six instructions, corresponding to the opcodes of

the PBM packets. Written in set notation, the instruction type PI is defined as:

I-aef PI = { PWriteLM, PReadLM, PWritePIU, PReadPIU, PWriteCB, PReadCB ) I
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The predicate PIUPSet_Correct defines the correct behavior of this instruction set in terms of the spec-

ification for each of the six individual instructions. The parameter rep is the abstract representation; s, e,

and p are the PIU state, environment (inputs), and output, respectively. The variable pi is the PIU instruc-
tion and t is the transaction-level time.

l-def PlUPSet_Correct rep s e p = V pit. PIUP_Correct rep pi s e p t I

The predicate PIUP_Correct is the correctness specification for an individual PIU instruction. The con-

stituent predicates are described below. Briefly, the behavior of an instruction pi is read as: "if pi is exe-

cuted at time t, and if its preconditions are true at time t, then its postcondition will be true at time t." The

postcondition (at time t) usually includes the definition of the (next) state at time t+l.

I°def PIUP_Correct rep pi s e p t =

PIUP_Exec pi s e p t A
PIUP_PreC pi s e p t

PIUP_PostC rep pi s e p t

The predicate PlUP_Exec defines the conditions under which each instruction pi is executed. As seen

from the definition, the opcodes received from the PIU's two masters (the FTCU and the local processor)

dictate the PIU's course of action. For example, the instruction PWriteLM is executed (i.e., PlUP_Exoe

PWriteLM s e p t = T) if the PIU receives an opcode of ERM_NoRe=et from the FTCU and an opcode of

PBM_WriteLM from the processor. It is clear from this definition that at most one instruction will be selected

for execution, since the six packet opcodes are mutually exclusive.

I-d,./ PlUP_Exec pi s e p t =

(ERM_Opcode_inE (e t) = ERM_NoReset) A
((pi = PWriteLM) =:> (PB_Opcode_inE (e t) = PBM_WriteLM) I
(pi = PReadLM) :=:>(PB_Opcode_inE (e t) = PBM_ReadLM) I
(pi = PWritePIU) ==_ (PB_Opcode_inE (e t) = PBM_WritePlU) I
(pi = PReadPlU) =_ (PB_Opcode_inE (e t) = PBM_ReadPIU) I
(pi = PWriteCB) =:> (PB_Opcode_inE (e t) = PBM_WriteCB)

% (pi = PReadCB) % I (PB_Opcode_inE (e t) = PBM_ReadCB))

The predicate PIUP_PmC defines an additional precondition for the execution of an instruction pi. Here,

we require that the state of the FSM within the PIU SU_Cont block is SO, or operational. This condition,

combined with the reset input constraint described above, is expected to be sufficient to ensure that

SU_Cont doesn't transmit any local resets to the other PIU ports.

I IOdef PlUP_PreC pi s e p t = (ST_fsm_stateS (s t) = SO)

The predicate PIUP_PostC defines the correct actions to be taken by the PIU for each instruction pi,

given the environment established by the previous two predicates. The required behavior for the instruction
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PWriteLM, for example, is to update the state according to the next-state function PStable_State_NSF and

transmit an output according to the output function PWriteLM_OF.

I'dtf PIUP_PostC rep pi s e p t =

(pi = PWriteLM) _ ((s (t+l) = PStable_State_NSF (s t) (e t)) A

(p t = PWriteLM_OF rep (s t) (e t))) I

(pi = PReadLM) =_ ((s (t+l) = PStable_State_NSF (s t) (e t)) A
(p t = PReadLM_OF rep (s t) (e t))) I

(pi = PWritePIU) :=:> ((s (t+l) = PWrite_PIU_NSF ($ t) (e t)) A

(p t = PWritePIU_OF rep (s t) (e t))) I

(pi = PReadPIU) =_ ((s (t+l) = PStable_State_NSF (s t) (e t)) A

(p t = PReadPIU_OF rep (s t) (e t))) I

(pi = PWriteCB) :=> ((s (t+l) = PStable_Stete_NSF (s t) (e t)) A

(p t = PWriteCB_OF rep (s t) (e t)))

% (pi = PReadCB)% I ((s (t+l) = PStable_Stete_NSF (s t) (e t)) A

(p t = PReadCB_OF rep (s t) (e t)))

As seen from the postcondition definition, several different functions have been defined. There are two

next-state functions, one of which represents the stable-state case (PStable_State_NSF), while the other rep-

resents a PIU-register write (PWrite_PlU_NSF). The first of these functions is trivially short while the second

is very long due to the complicated way that the PIU register file is defined. The interested reader is referred

to [Fur93b] for the details of these functions.

There are six output functions---one for each instruction. The function defining a C_Bus write is rela-

tively short, but nontrivial enough to make it interesting, so we include it here:

I-a_f PWriteCB_OF rep s e =

let PB_Opcode_out = PBS_Ready in

let PB_Deta_out = (ARBN:num-_wordn) in

let MB_Opcode_out = MBM_Idle in

let MB_Addr_out = (ARBN:num-,wordn) in

let MB_Data_out = (ARBN:num-->wordn) in

let MB BS out = (ARBN:wordn) in

let CB_Opcode_out = CBM_WriteCB in

let CB_Addr_out = PB_Addr_inE e in

let bs = VAL 1 (PB_BS_inE e) in

let dO = ELEMENT (PB_Deta_inE e) (0) in

let dl = ELEMENT (PB_Data_inE e) (1) in

let cl2 = ELEMENT (PB_Deta_inE e) (2) in

let d3 = ELEMENT (PB_Deta_inE e) (3) in

let o0 = ALTER ARBN (0) (Par_Enc rep dO) in
let ol = ALTER o0 (1) (bs > 0 =:> (Par_Enc rep dl) I ARBN) in

let 02 = ALTER ol (2) (ha > 1 :=> (Par_Enc rep d2) I ARBN) in
let 03 = ALTER o2 (3) (bs > 2 =:> (Par_Enc rep d_) I ARBN) in

let CB_Data_out = o3 in
let CB BS out = PB BS inE ein

let CB BE out = PB BE inE ein

(PIUTOut PB_Opcode_out PB_Data_out MB_Opcode_out MB_Addr_out

MB_Data_out MB BS out CB_Opcode_out CB_Addr_out CB_Deta_out

CB BS outCB BE out)
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At the bottom of this definition is the value returned by the function, which can be thought of as an ll-

tuple. This has the same data type as the variable p seen in the earlier definitions. The lines above it define

the values that are returned within the tuple.

The first two lines of the function define the PBS packet sent to the local processor. The PBS_Rea_

opcode specifies that the PIU obeys the slave portion of the L_Bus protocol.

The next four lines define the MBM packet sent to the local memory. The MBM Idle opcode indicates

that the PIU does not initiate an M_Bus transfer, but instead holds its outputs inactive or tri-stated, as

appropriate.

The CBM opcode CBM_WriteeB specifies that the PIU initiates a C_Bus write transaction and imple-

ments its part of the protocol properly. The address sent out is the same as the one received from the local

processor, as are the block size and byte enables.

The data portion of the CBM packet is a parity-encoded version of the data received from the local

processor. The several lines describing the encoding first take apart the 4-word input data array into the

variables d0--dZ, using the array accessor function, ELEMENT.The individual words are encoded (Par_Ene

rep) before being packaged into a new array using the array constructor function ALTER. All unused slots

are given the value ARBN, representing an arbitrary value.

6.2.2 Port Level

In this section we describe the transaction-level interpreter model for the PPort to show the flavor of

the port-level specifications.

Like the definition of its PIU-levei counterpart, the P_Port instruction set definition, PTSeI_CorrecI, is

defined in terms of an individual-instruction correctness predicate:

I-4, / PTSet_Correct s e p = V pti t. PT_Correct pti s e p t ]

The instruction and time variables, pti and t, represent transaction-level entities. Unlike the PIU model

where six instructions were defined, here there are only two: PT_Write and PT_Read, for handling data

writes and reads, respectively.

The individual instruction correctness predicate PT_Correet is defined similar to before:

I-de/ PT_Correct pti s e p t PT_Exec pti s e p t A

PT_PreC pti s e p t

PT_PostC pti s e p t

Some additional differences between the port- and PIU-level models are evident in the definitions for

the execution predicate, precondition, and postcondition.
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6.2.2.1 Execution Predicate

The P_Port execution predicate is defined as follows:

l-d,/ PT_Exec pti s e p t = (Rst_Opcode_inE(e t) = RM_NoReset) ^
(IBA_Opcode_inE (e t) = IBAS_Ready) /x
((pti = PT_Write) =:>

((PB_Opcode_inE (e t) = PBM_WriteLM) v
(PB_Opcode_inE (e t) = PBM_WritePIU) v
(PB_Opcode_inE (e t) = PBM_WriteCB))

% ((pti = PT_Read) % I
((PB_Opcode_inE (e t) = PBM_ReadLM) v
(PB_Opcode_inE (e t) = PBM_ReadPlU) v
(PB_Opcode_inE (e t) = PBM_ReadCB)))

Although this looks somewhat complicated its meaning is really pretty simple. For example, the instruc-

tion PT_Write is executed at time t if and only if the input Rst_Opcode_in equals RM_NoReset, the input

IBA_Opcode_in equals IBAS_Ready, and the input PB_Opcode_inequals either PBM_WriteLM, PBM_WritePIU,

or PBM_WriteCB.

The Rst_Opcode_in input defines the behavior of the clock-level reset input (Rst) provided by the start-up

controller (Figure 5.1). An input of RM_NoReset indicates that tiffs clock-level signal is inactive low.
The IBA_Opcode_in input defines the behavior of the I_Bus and C_Bus clock-level arbitration signals

(l_hold_ and I_¢gnt_) transmitted by the C_Port. An input of IBAS_Ready indicates that the C_Port is imple-

menting its part of the arbitration protocol correctly.

The PB_Op¢ode_in input,defines the behavior of the local processor. The three opcodes listed above rep-

resent a processor request for a local-memory write, a PIU register-file write, or a CBus, global-memory

write, respectively. Each of these represents a scenario in which the local processor is correctly implement-

ing the L_Bus protocol. PB_Opeodo_in abstracts the behavior of clock-level signals such as the address/data

bus (L_ad_in) and certain control signals (L_wr, L_ads_, and L_don_).

6.2.2.2 Precondition

The transaction-level precondition for the P_Port is as follows:

i- clef (PT_PreC pti s e p 0 = -=(PT_fsm_stateS(s0) = PD) ^
-_PT_rqtS(s 0)) ^

(PT_PreC pti s • p (SUC t) = -_(PT_fsm_stateS(s (SUC t)) = PD) ^
-_PT_rqtS(s (SUC t) ^

((PT_Exec PT_Write a e p t ^ PT_PreC PT_Write• e p t) v
(PT_Exec PT_Read s e p t A PT_PreC PT_Read s • p t)))

The precondition is defined recursively with respect to the transaction time t. It contains two parts, cov-

ering the base case (time is 0) and the recursive step (time is SUC t, where 'SUC' is the successor function).

For both cases the predicate requires that two P_Port state variables (PT__tem_=tate and PT_rqt) have specific

values at the start of a transaction (non-OD and F, respectively). These state-variable preconditions are not

strictly necessary, but avoiding them adds a significant burden on the proof. (See [Fur93a] for furl.her dis-

cussion of this.)
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The remaining part of the predicate asserts that an instruction was executed during the prior transaction-

level time and that its precondition was satisfied. The reason for including this precondition on a prior exe-

cution is that several of our induction proofs have required it. This is something that we added after attempt-

ing proofs as part of the P_Port verification. We don't believe that it causes any fundamental problems, since

if a prior execution does not exist then the environment of the P_Port was erroneous and in this scenario we

could not hope to know the P_Port's condition at transaction start. Nevertheless, in our future Task 12 work

we will explore ways to eliminate the need tor this part of the precondition.

6.2.2.3 Postcondition

The transaction-level postcondition for the P_Port is as follows:

I-def PT_PostC pti s e pt =

(pti = PT_Write) :=_ (((s (t + 1) = PT_WriteNSF_A (s t) (e t)) v

(s(t+ 1) = PT_WriteNSF_H (st)(et)) A
(p t = PT_WriteOF (s t) (e t)))

% (pti = PT_Read) % I (((s (t + 1) = PT_ReadNSF_A (s t) (e t)) v

(s (t + 1) = PT_ReadNSF_H (s t) (e t)) A

(p t = PT_ReadOF (st) (e t)))

For each of the transaction-level instructions, the next state is defined by one of two next-state functions.

One of these defines the next FSM state variable to be PA, the other defines it to be PH. This is the same

condition as seen in the precondition, that is, non-laD. Each instruction contains a single function defining

the P_Port output.

The need for two next-state functions is dictated by the presence of the C_Port, which can request the

I_Bus. If it does so prior to the P_Port's receiving an L_Bus request to begin a new transaction (defining the

time t+l) then the P_Port will be in the PH, or hold, state. Otherwise it will be in the PA, or address, state.

6.3 Abstraction Definition

This section describes the abstraction predicates that relate the state, inputs, and outputs of the trans-

action and clock levels. We will use the actual PPort abstraction for concreteness, making heavy use of

the P_Port variables explained in Section 5. The abstractions for the other ports are simila_ Before describ-

ing the abstraction itself, Sections 6.3. l and 6.3.2 provide some background information to make the

abstraction definitions understandable. Section 6.3.3 describes the actual P_Port abstraction.

6.3.1 Signals

A number of signals have been defined to make the transaction-level specification more compact and

readable. They also help to simplify the verification in some cases by avoiding the need to perform case

splits. In this section we describe four such signals that see considerable use later in the description of the

PPort abstraction. All of these signals are functions, with types ":linmC--_bool."
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Thesignalale_sig_pb defines the presence (or absence) of local-processor memory requests. When true,

it indicates that the local processor is requesting an L_Bus transaction. This signal is shown in Figure 5.1 as

ale, and is defined in terms of L_Bus clock-level signals as follows:

I-_f V e'. ale_sig_pb e' = k u'. -_BSel(L_ads_E(e' u')) A BSel(L_den_E(e' u'))

BSel is an accessor function that returns the phase-B portion of the clock-level variable. As explained in Sec-

tion 5, L_ads_E and L__den_Eare also accessor functions that, when applied to the environment data structure

(e' u' above), return the values corresponding to the signals L_ads_ and Lden_, respectively.

The signal ale_sig_ib is the corresponding I_Bus version of ale_sig_pb, indicating that the P_Port is ini-

tiating an I_Bus transaction. It is defined as follows:

I-def V p'. ale_sig_ib p' _.u'. BSel(l_hlda_O(p' u')) A ((BSel(l_male_O(p' u')) = LO) v
(BSel(l_rale_O(p' u')) = LO) v
--_BSel(l_cale_O(p'u')))

As before, the functions I_hlda_O, etc. are accessor functions, in this case returning values from the P_Port

output data structure.

This signal has no physical counterpart within the P_Port design, but it indicates the precise conditions

under which the P_Port initiates an I_Bus transaction. When the signal I_hlda_ is true the P_Port, rather than

the C_Port, drives the I_Bus mastership signals I_mrdy_, I_last_, etc. An active low I_male_, I_rale_, or

I_cale_ indicates an M_Port, R_Port, or C_Port memory request, respectively. Both I_male_ and I_nlle_ are

outputs of tri-state buffers thus they are of 4-value-logic type ":wire."

The signal aek_sig_ib is defined as follows:

I I-a# V e' p'. ack_sig_ib e' p' = _,u'. (BSel(l_last_O(p' u')) = LO) A --_BSel(l_srdy_E(e'u')) i

When this signal is true at a clock-level time u', it indicates that the active portion of the current trans-

action is over at time u'. The P_Port supplies the signal I_last_ tOdefine when the last word is being accessed.

The I_Bus slave provides the signal I_srdy_.

The signal rdy_sig_ib is similar to ack_aig_ib in that it indicates the presence of an active I_srdy_, but

the inactive I_last_ output indicates that only an intermediate data-word access is being completed, rather
than the entire active transaction. Its definition is as follows:

I-j# V e' p'. rdy_sig_ib e' p' = _.u'. (BSel(l_last_O(p' u')) = HI) A --_BSel(l_srdy_E(e'u')) ]

6.3.2 Significant Event Times

Within a given transaction are several important times that correspond to the major events within the

transaction. These are times measured on the clock-level scale, occurring between the transaction-level
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times t and t+l. Figure 6.5 shows these times plotted along with their defining events, which are themselves

defined using the signals described in the last section.

t'rdy3
tp' tl' t'rdyO t'rdyl t'rdy2 t'nck

I I

T
ack_slg_lb e' p' t'uck

rdy_sig_ib e' p' t'rdy2

rdy_$1g_lb e' p' t'rdyl

rdy_sig Ib e' p' t'rdyO

ale_slg_lb p' ti'

ale_slg_pb e' to'

tp'suc

I

t
ale_slg_l)b e' tp'suc

Figure 6.5: Significant Events and Times Within a P_Port Transaction.

The clock-level variable tp' represents the beginning of the transaction interval, defined by the arrival

of local-processor memory request (ale_sig_pb e' tp' is true). This is the concrete time corresponding to the

P_Port transaction-level time t. The 'p' signifies a 'processor-bus' transaction time--the Intel L_Bus is

sometimes given the generic designation 'P_Bus.'

The variable ti' represents the time that the P_Port initiates an I_Bus transaction (ale_sig_ib p' ti' is true)

in response to the processor L_Bus request. This transaction is either begun immediately, or else forced to

wait because of a busy I_Bus (as in Figure 6.5). Within a given transaction then, we have ti' > tp'.

The variables t'rdyO, t'rdyl, t'rdy2, and t'rcb/8 represent the times that the I_Bus slave port (the P_Port is

the I_Bus master) responds with an active-low I_srd?_ signal, indicating that the slave has finished process-

ing the current data word. For data writes this means that the slave is ready to receive the next word, while

for data reads this means the the slave is currently sourcing a valid data word. Not all of these times are

applicable for a given transaction however--they are used, from left to right, as the number of data words
in the transaction (i.e., the block size) is increased from one to four. Figure 6.5 shows the case for a block

size of four.

The variable t'sack is used to represent the time that I_srdy_ becomes active-low to end the active part

of the current transaction. It therefore represents the same time as one of the t'rdy variables, depending on

the block size. The 'sack' within this variable name is taken from the signal with the same name shown in

Figure 5.1. It is a shorthand for 'slave acknowledge.'

The clock-level variable tp'tuc represents the time that a new transaction request arrives over the

L_Bus. This event officially marks the end of the current transaction and the beginning of a new one. The

interval between t'tutck and tp'sue represents idle time. Just as tp' corresponds to the transaction-level time

t, tp'tuc marks the clock-level time corresponding to t+l.

67



6.3.3 The Abstraction

The abstraction predicate PTAbsSet defines the relationship between the P_Port signals at the transac-

tion level and those at the clock level. It is defined in terms of the individual-instruction abstraction predicate
PTAbs as follows:

I I-_# Vseps'e'p'. PTAbsSetseps'e'p' = Vptit. PTAbsptisepts'e'p' I
PTAbs is itself defined as:

I-da V ptis ept s'e' p'. PTAbs pti s e p t s' e' p' =

(PT_Exec pti s e p t

3 tp'. NTH_TIME_TRUE t (ale_sig_pb e') 0 tp' ^ (tp' > 0))
(V tp'. NTH_TIME_TRUE t (ale_sig_pb e') 0 tp'

(Rst_Slave pti e t e' ^
PB_Slave pti e p t e' p' tp' A
IBA_PMaster pti e p t e' p' ^
PStateAbs pti s e p t s' e' p' tp')) A

(V ti'. NTH_TIME_TRUE t (ale_sig_ib p') 0 ti'
IB_PMaster pti e p t e' p' ti')

A

This predicate has three parts. The first says that if an instruction is executed at transaction time t, then

there exists a clock time, tp', such that the predicate NTH_TIME_TRUEt (ale_sig..gb e') 0 tp' is true, and tp' is

greater than 0. This predicate is read as "an L_Bus request arrives at the P_Port at time tp', and this is the

t'th such request to have arrived since clock-time o." This formally establishes a temporal relationship
between the transaction boundaries at the two different levels.

This part of the abstraction predicate is similar to the 'interpreter liveness' property of Section 3. In this,

and the preceding work, the predicate was a function of only the interpreter state, and it was possible to con-

struct a proof that the predicate was true for all t. In our case however, the predicate's dependence on the

environment rules out this possibility, since this would require proving facts about inputs that the interpreter

has no control over. Fortunately, it is not necessary to establish this predicate for all time -- the current time

(t, as defined by PT_Exee pti $ • p t) is sufficient.

Our solution to the interpreter liveness problem is a temporary one. It has allowed us to make progress

on other aspects of the P_Port specification and verification with only a slight risk of introducing a contra-

diction by doing so. One of the important objectives of Task 12 will be to refine our approach to this prob-
lem.

The second part of the predicate defines the complete temporal abstraction for the 'L_Bus side' of the

P_Port. This part says that if the t'th L_Bus request arrives at time _' then the four predicates shown there

are true, establishing the majority of the abstraction for the P_Port. Note that the antecedent for this part is

satisfied by the consequence of the 'interpreter liveness' portion of the predicate.

The third part of the predicate defines the temporal abstraction for the I_Bus side of the P_Port. Note

that the antecedent for this part is not satisfied by the other parts of the abstraction predicate. This is a prop-

erty that must be established by proof (as we have) since it is not necessarily the case that every L_Bus trans-

action causes an I_Bus transaction. This property is a function of the P_Port design itself.

The five abstraction 'subpredicates,' Rst_Slave, PB_Slave, IBA_PMaster, PStateAbs, and IB_PMaster,

are too lengthy to fully describe here. Instead, we will present some of the more interesting individual input

and output variable relationships that are contained within these subpredicates. In the following four sub-

sections, we describe: (1) the transaction address definition, (2) the transaction block-size definition, (3) the
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L_Bustransactionopcodedefinition,and(4)otheropcodedefinitions.The full details of the P_Port abstrac-

tion can be found in [Fur93b].

6.3.3.1 Transaction Address

The abstractions defining the P_Port transaction addresses are two of the simplest relationships within

the entire P_Port. As shown next, the input transaction address is simply bits 25--2 of the clock-level Lad in

bus, sampled during phase A of clock time tp' (tp' is defined in PTAbs above). The output address is con-

tained in bits 23--0 of the output clock-level bus I nd out, sampled on phase B of clock time ti' (ti' is also

defined in PTAbs above). Note that the busn-to-wordn translation (see Section 4) is required because Iad -

out is driven by a tri-state buffer (see Figure 5.1).

L_Bus Input Transaction Address:
PB_Addr_inE (e t) -- SUBARRAY(ASel (L_ad_inE (e' tp'))) (25,2)

l_Bus Output Transaction Address:
IB_Addr_outO (p t) = SUBARRAY(wordnVAL (BSel (I. ad outO (p' ti')))) (23,0)

Although these abstractions are simple ones, they illustrate the use of the two temporal variables: tp' and

ti'. Together, these temporal streams provide important benefits in two areas: transaction-level port compo-

sition and the resolution of shared-state problems. For transaction-level composition it is necessary that

I_Bus packets be mapped in each port using the same clock-level signals and the same clock-level times

(see Section 2.4). Since the only signals common to all the ports are I_Bus signals, it is necessary that the

P_Port have its I_Bus packets defined with respect to l_Bus signals and times, rather than L_Bus signals and

times. The definition ofti', as shown above, is a natural consequence of this requirement.

The two temporal bases also permit a satisfying solution to the shared-state problem. For example, con-

sider a scenario where the local processor is executing a read operation from the PIU register file at a trans-

action-level time t. The individual transaction-level models for the P_Port and R_Port, when composed,

correctly implement such a read; the R_Port passes the specified register value onto the I_Bus and the

P_Port forwards it to the local processor.

Of course, it is not enough simply to provide transaction-level port specifications that satisfy the desired

P-Process behavior--these specifications must be implemented by the clock-level ports. The temporal vari-

able tr provides the means to achieve these port verifications. The Verification Report [Fur93a] describes

the verification of the transaction address using these two temporal streams.

6.3.3.2 Transaction Block Size

The block-size abstraction is interesting because of the vastly different approaches used in the L_Bus

and I_Bus. As seen below, the L_Bus block size is contained within the two least significant bits ofL ad in.

It is sampled during a single phase (A) of a single time (tp').
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L_Bus Input Transaction Block Size:
PB BS inE (e t) = SUBARRAY (ASel (L_ad_inE (e' tp'))) (1,0)

l_Bus Output Transaction Block Size:
let t'rdyO = _ u'. NTH_TIME_FALSE 0 (bsig I_srdy_E e') (ti'+l) u' in
let t'rdyl = E u'. NTH_TIME_FALSE 1 (bsig I_srdy_E e') (ti'+l) u' in
let t'rdy2 = £ u'. NTH_TIME_FALSE 2 (bsig I_srdy_E e') (ti'+l) u' in
let t'rdy3 = _ u'. NTH_TIME_FALSE 3 (bsig I_srdy_E e') (ti'+l) u' in

IB BS outO (pt) =
(STABLE_LO (bsig I_last_O p') (ti'+l, t'rdyO)) :=:> WORDN 1 0 I
(STABLE_HI (bsig I_last_O p') (ti'+l, t'rdyO) ^
STABLE_LO (bsig I_last_O p') (t'rdyO+l, t'rclyl)) =::> WORDN 1 1 I

(STABLE_HI (bsig I_last_O p') (ti'+l, t'rdyl) A
STABLE_LO (bsig I_last_O p') (t'rdyl+l, t'rdyl)) _ WORDN 1 2 I

(STABLE_HI (bsig I_last_O p') (ti'+l, t'rdy2) ^
STABLE_LO (bsig I_last_O p') (t'rdy2+l, t'rdy3)) =_ WORDN 1 3 I ARBN

In contrast, the I_Bus block size is defined by the behavior of the P_Port output signal I_last_ during

certain key intervals of time. If I_last_ is LO for the duration of the entire first data word (the closed interval

[tr+l, t'rdyO]) then the block size value is WORDN 1 0 (or FF - see Section 4). This corresponds to a block

size of one word. If I_last_ is HI during the first interval, but LO during the next data-word interval, then the

block size is two words, etc.

This approach was selected by the PIU designers' because it eliminated the need to include a counter

within each I_Bus slave port, to keep track of the current word count. As explained in [Fur93a], this design

decision contributed to a difficult block-size proof.

6.3.3.3 L_Bus Opcodes

The transaction-opcode abstractions are some of the most interesting because they encapsulate, within

single transaction variables, wide ranges of disparate clock-level behavior. This behavior usually involves

communication and control activities, such as bus arbitration, handshaking, and tri-state buffer enabling.

The L_Bus input opcode abstraction is shown next. Informally, if the L_Bus master (the local processor)

acts in a 'valid' way, then the opcode is determined by certain address bits and the read/write (L_wr) signal.

For example, if L_Bus address bit 31 is F, bits 25-24 are not T'r, and the read/write bit is T, then a write oper-

ation to local-memory is being selected.
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let bs = VAL 1 (SUBARRAY (BSel (L_ad_inE (e' tp'))) (1,0)) in
let Imem = (ELEMENT (ASel (L_ad_inE (e' tp'))) (31) = F) A

--1(SUBARRAY (ASel (L_ad_inE (e' tp'))) (25,24) = WORDN 1 3))) in

let piu = (ELEMENT (ASel (L_ad_inE (e' tp'))) (31) = F) ^
(SUBARRAY (ASel (L_ad_inE (e' tp'))) (25,24) = WORDN 1 3))) in

let cbus = ELEMENT (ASel (L_ad_inE (e' tp'))) (31) = T) in
let write = ASel (L_wrE (e' tp')) in
let read = -_ write in

let valid_rqt = V u'. LESS_THAN N TIMES_FALSE bs (bsig L_ready_O p')tp' u'
STABLE_FALSE (ale_sig_pb e') (tp'+l, u'+l) in

L_Bus Input Transaction Opcode:

PB_Opcode_inE (et) =
valid_rqt =::>

(Imem =::> (write :=_ PBM_WriteLM I PBM_ReadLM) I

piu => (write ==:>PBM_WritePIU I PBM_ReadPIU)I Icbus =:> (write _ PBM_WriteCB I PBM_ReadCB) PBM_lllegal) I
PBM_lllegal)

The local processor is implementing a 'valid' transaction request as long as it doesn't issue a new

request before the P_Port responds with an active-low L_ready_ signal 'block size' times (i.e., once for each

of the expected data words). The predicate valid_rqt captures this notion. (The variables defined using the

let notation will be reused in some of the other abstractions below.)

Input opcodes such as this are important in capturing assumptions, on the environment, necessary to

achieve port correctness proofs. Recall that the execution predicate for the P_Port (Section 6.2.2.1) can be

true only if one of the legal L_Bus opcodes is received. From the opcode definition shown here, this implies

that valid_rqt is true, a fact that we need in our P_Port proof.

The L_Bus output opcode abstraction, shown next, defines the transaction opcode with respect to the

clock-level L_ready_ control signal and the L nd out bus output enabling. If the predicate valid_aek is true

then the opcode value is the desired PBS_Rendy, otherwise it is PBS_lllegal.

let t'aek = E u'. NTH_TIME_FALSE bs (bsig L_ready_O p') tp' u' in

let valid_ack = (3 u'. N_TIMES_FALSE bs (bsig L_ready_O p') tp' u') _.

(STABLE AB OFFn (sig L ad outO p') (tp', tp')) A

(write _ (V u'. STABLE_FALSE (ale_sig_pb e') (tp'+l, u')
STABLE AB OFFn (sig L ad outO p') (tp'+l, u'))) A

('9'u'. STABLE_FALSE (ale_sig_pb e') (t'ack, u')
STABLE AB OFFn (sig L ad outO p') (t'ack+l, u')) in

L_Bus Output Transaction Opcode:

PB_Opcode_outO (p t) = valid_ack =::> PBS_Ready [ PBS_Illegal

The predicate valid_ack is itself composed of four parts. The first says that L_ready_ must be brought

active-low 'block size' times. The other three parts dictate the behavior of the L ad out bus. The bus must

be off (high-impedance) at the beginning of the transaction (at tp'); it must be off, during write transactions,

throughout the entire transaction; and finally for all transactions (even reads) the bus must be off between

the time of the last L_ready_ acknowledgement and the next transaction request.

Both of the P_Port output functions (PT_WriteOF and PT_ReadOF) of the P_Port postcondition (Section

6.2.2.3) specify an L_Bus opcode of PBS_Ready.
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6.3.3.4 Other Input Opcodes

The P_Port receives its remaining transaction opcodes from the SU_CONT (Rst_Opcode_in), the I_Bus

slave port (IB_Opcode_in), and the C_Port (IBA_Opeode_in). The 'reset' opcode shown next defines the nor-

mal processing scenario that is assumed in the P_Port specification and verification. An opcode of

RM_NoReset is the abstract equivalent to an always-F clock-level Rst signal.

Reset Input Opcode:
Rst_Opcode_inE (e t) = (V u'. BSel (RstE (e' u')) = F) :::> RM_NoReset I RM_lllegal)

The l_Bus slave opcode shown next defines the required behavior for the I_srdy_ clock-level signal that

is sourced by the I_Bus slave port. The definition for IB_Opcode_in is closely tied to the I_Bus block-size

abstraction described earlier, and, in fact, was modified to its current definition during the block-size verifi-

cation.

let valid_ackl =
(3 u'. STABLE_TRUE_THEN_FALSE (bsig I_$rdy_E e') (ti'+l, u')) ^
(V u'. rdy_sig_ib e' p' u' Z)

(3 v'. STABLE_TRUE_THEN_FALSE (bsig I_srdy_E e') (u'+l, v'))) in

l_Bus Slave Input Opcode:

IB_Opcode_inE (ot) = valid_ackl =::>IBS_Ready I IBS_lllegal

The I_Bus slave is required to transmit at least one active-F l_srdy_ after receiving the I_Bus transaction

request from the P_Port (i.e., after time ti'). (The predicate STABLE_TRUE_THEN_FALSE f (tl,t2) says that

the signal f is F for the first time at t2, on or after the time tl.) In addition to this, if the slave does transmit

such a value while the P_Port is sending an inactive-HI Wast_ (i.e., the signal rdy_sig_ib e' p' is true), then

it will transmit another active-F Lsrdy_ at some later time. This defines the 'control' part of the slave portion

of the l_Bus handshaking protocol. (Other parts of this protocol may be considered to lie in the definition

of the transaction data fields, etc.)

The C_Port implements the 'slave' portion of the bus arbitration protocols between it and the P_Port.

One of these protocols is for the PIU l_Bus, the other is for P_Port requests for C_Bus accesses. The I_Bus

protocol is implemented with two control signals: I_hold_ is a C_Port output that indicates an l_Bus request

to the P_Port. The P_Port will automatically grant the I_Bus to the C_Port as long as it doesn't need the bus

itself. It indicates this by sending an active-F I_hlds_.

The P_Port indicates a C_Bus request to the C_Pon by sending an active-F I_crqt_. The C_Port responds

with an active-F I_cgnt._after it vies for and acquires the C_Bus.

Of the four parts to this definition, shown next, the first two are expected and correspond to the two sit-

uations just described. The remaining two are required by aspects of the P_Port implementation. The first

part of the specification says that if the P_Port gives the I_Bus to the requesting C_Port, then the C_Port will

stop requesting it sometime in the future. The second pan says that if the P_Port requests the C_Bus, then

the C_Port will grant the C_Bus to the P_Port sometime in the future.
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let valid_ack2 :
(V u'. -, I_hlda_O (p' u') _ 3 v'. STABLE_FALSE_THEN_TRUE (bsig I_hold_E e') (u', v')) ^
(V u'. CHANGES_FALSE (bsig I_crqt_O p') u'

(3 v'. (u' < v') A STABLE_TRUE_THEN_FALSE (bsig I_cgnt_E e') (u', v'))) A
(V u'. SSel (l_crqt_O (p' u')) _ BSel (l_cgnt E (e' u'))) ^
(V u'. -_ BSel (l_cgnt_E (e' u'))

(BSel (l_hold_E (e' u')) ^ BSel (l_hold_E (e' (u'-l))))) in

l_Bus Arbitration Slave Input Opcode:
IBA_Opcode_inE (et) = valid_ack2 =_ IBAM_Ready I IBAM_Illegal

When we began this project there was no formal I_Bus specification, and this seems to be reflected in

the P_Port design. For example, the output signal I eale_ is a function of the input signal I_egnt_, but not

I_erqt_ (Figure 5.1). As part of the P_Port proof it is necessary to show that at most one of I_male_, I_rale_,

and I_eale_ is active at any given time. In proofs of scenarios involving local memory and PIU register file

accesses, it is therefore necessary to show that I_eale_ is inactive-T. While we can show that I._er__ is inac-

tive-T, we cannot do this for l_cgnt_ since it is an input. This led us to add the third part of the valid_ack2

predicate below, which asserts that I_egnt_ cannot be active-F unless I_¢r__ is also active-F.

The fourth part of valid_aek2, which puts constraints on the input signal I_hold_, has two parts itself. The

first says that if I_egnt_ is active-F at a time u', then I_hold_ must be inactive-T during this same cycle. This

is needed so that the P_Port output signal I_eale_ will take its correct value of active-F during the beginning

of the I_Bus transaction (i.e., so that ale_sig_ib p' u' will be true).

The second constraint on I_hold_ is that it be inactive-T on the cycle prior to I_egnt_'s being active-F.

This is needed so that the P_Port FSM will correctly transition into the data state (PD) rather than the hold

state (PH), at the start of the I_Bus transaction.

We have conducted an informal review of the C_Port design and have convinced ourselves that the

C_Port satisfies the assumptions placed on its outputs I_egnt_ and I_hold_. Of course, the C_Port verification

will be required to formally prove this.

We believe that the P_Port design provides yet more evidence for the value of formal specifications

within the design process itself. The lack of a clear I_Bus specification has led the P_Port design team to

trade away some 'reasoning simplicity' for a very small improvement in hardware simplicity. The current

design requires operating assumptions on the C_Port design that were not documented and are nontrivial to

verify.

6.4 Discussion

In this section we briefly review the important results of our requirements specification work, overview

the overall status of the work, and discuss possible future work to extend our results.

Our requirements specification work has proceeded under the influence of three somewhat competing

goals:

(a) We have tried to develop a specification approach with sufficient modeling power to handle the

needs of the PIU requirements, and mature enough to anticipate certain key verification issues, pri-

marily concerning composition, that are expected to arise in future tasks. The pre-post interpreter

model and the abstraction model, described in this section, are the results of this effort.
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(b) In orderto fullyexerciseourspecification approach, we have also tried to get as far along a com-

plete transaction-level specification/verification cycle as possible. Without this experience, on a

real example, it is difficult to evaluate a specification modeling approach. This section, combined

with the Verification Report [Fur93a], describes the specification and partial verification of the

P_Port requirements. We believe that the verification results described in [Fur93a] validate the

effectiveness of our modeling approach (at least with respect to its handling of abstraction).

(c) A third objective of this task placed its emphasis on completing the specification models for each

of the four processes described in Section 1. As explained in Section 4, we have finished all of the

clock-level design models. The requirements models completed at this time are: interpreter mod-

els for the PIU, P_Port, M_Port, R_Port, and C_Port requirements, and the abstraction models for

the P_Port and M_Port. These models were targeted towards the P Process, although some are

applicable to the other processes as well.

We are encouraged by the results of our requirements specification work. To begin, the overall model-

ing approach, combining the pre-post interpreter model with abstraction predicates, has successfully mod-

eled portions of the PIU at levels of abstraction well above the current state-of-the-art (for hardware

interpreter modeling).

The requirements specifications that we have developed are extremely simple and easily-understood

models. The key to achieving this is the isolation of the complicated abstraction relationships within sepa-

rate abstraction predicates. These abstraction relationships use a temporal logic, similar to others, that we

have developed to handle processor bus protocols. Our approach is in direct contrast to other specification

approaches that use temporal logic as the specification language itself (e.g., [Mos85]). Our approach lifts

the top-level specification through this temporal logic description to achieve a much simpler description in

the form of an interpreter. The abstraction predicates can always be consulted when one is interested in

studying the relationships contained there.

Using the reasoning explained in Section 2.4, we expect our interpreter modeling approach to support

the provably secure composition of transaction-level models. The key to secure composition, building on

the work in [Mel90], is the use of common abstraction definitions for the interface signals linking the mod-

els to be composed. Our work is an improvement over previous efforts in abstract-level composition (e.g.,

[Sch91 ]) in our careful attention to ensuring the soundness of this composition, by considering its relation-

ship to abstraction.

While we are confident that our interpreter modeling approach will support secure transaction-level

composition, only the successful execution of the port compositions planned for Task 12 can validate this
confidence.
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7 Conclusions

We have successfully completed the PIU design specification and significant portions of the require-

ments specification using a new modeling approach that extends the current hardware specification state-of-

the-art. In this section we discuss: (a) the new interpreter modeling approach; (b) the PIU specification

itself; (c) the advantages of FSM-based models, with some techniques for increasing their suitability for

large system modeling; and (d) future work.

7.1 Pre-Post Interpreter Model

We have developed a new hardware modeling approach that supports transaction-level specifications

based on standard finite-state machines (FSMs). This approach, the pre-post interpreter model, was used to

complete the design specification for the PIU ports and a significant portion of the requirements specifica-

tion.

The pre-post interpreter model employs many of the modeling and verification ideas embedded within

the generic interpreter theory, developed in an earlier task of this contract ([Win90a]). Specific similarities

are the use of explicit instruction-set variables to guide correctness proofs and hierarchical decomposition

ideas to control the complexity of large system verifications.

The pre-post model is distinguished by its use of execution predicates to provide greater modeling flex-

ibility and instruction preconditions to facilitate transaction-level theorem proving. In addition, it is aug-

mented with explicit abstraction predicates for greater flexibility in expressing the relationships between

abstract variables and the underlying concrete variables. These predicates permit the mapping of interme-

diate concrete variables to the abstract level, in contrast to previous approaches that allow mapping only at

the boundaries of the abstract operations.

7.2 The PIU Specification

We have completed the design specification for the PIU ports and have completed much of the require-

ments specification for the PIU P Process, which describes memory accesses initiated by the local PMM

processor.

The modeling and verification ideas embedded within the generic interpreter theory were used to great

benefit in the PIU design specification. In particular, we extended the hierarchical decomposition ideas

advanced in this earlier work by developing clock-level component models for the gate-level specification.

These clock-level models reduced the amount of theorem proving required in the clock-level verification,

as well as providing a sound solution to the clock-level composition problem.

The PIU requirements specification effort required modeling advances to address issues in shared state

and in multiple, sequential inputs and outputs occuring within a single transaction. We have developed a

packet-based transaction modeling approach, that in conjunction with the general-purpose abstraction pred-

icates mentioned above, solves both of these problems:

(a) The flexible approach to abstraction permits two independent temporal bases within the same spec-

ification. For example, the P_Port's use of both an L_Bus temporal base (tp') and an I_Bus temporal

base (ti') is key to permitting straightforward predicate-style composition of the PIU ports, and is

instrumental in solving the shared-state problem above.

(b) The flexible mapping of concrete variables to the abstract level permits sequential inputs and out-

puts to be mapped to abstract-level data structures in a straightforward way.
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7.3 Finite-State Machine Modeling

Because it is FSM-based, the pre-post interpreter model has a number of important advantages for hard-

ware specification. In contrast to other formalisms, including temporal logics (e.g., [Mos85]) and process

algebras (e.g., [Mil80]), FSMs contain all of the following features:

(a) FSMs are composable. Well-established techniques exist to compose FSMs into larger structures.

Predicate-style composition has been widely used for many years now. In this task we have devel-

oped specification guidelines to accommodate provably secure predicate-style composition at high

levels of abstraction, including the transaction level.

(b) FSMs are executable. Simulation remains the preferred approach for the early detection of obvious

design mistakes. In addition, the ability to simulate a requirements specification can be important

in eliminating specification flaws. A formal modeling approach based on executable FSMs facili-

tates an integrated simulation/theorem-proving approach to system development. For example, it

supports the straightforward translation of simulation models into formal models.

(c) FSMs are concise. When system behavior can be effectively abstracted, as in the case of transac-

tions, FSMs provide an extremely simple model of system behavior. The pre-post interpreter model

presents a very concise description of abstract-level behavior by isolating the detailed (temporal-

logic) abstraction information within its own separate predicate.

(d) FSMs are familiar. FSMs are widely understood, not only among formal-methods experts, but also

within the hardware design community. The importance of this should not be underestimated, since

formalisms unfamiliar to designers are likely to see much greater resistance by this community.

To address a major shortcoming of FSM-based modeling (the well-known state-explosion problem), our

work promotes the exploitation of two very effective approaches:

(a) Abstract-level composition. By performing abstraction within a subsystem prior to its composition

with other subsystems, the amount of detail expressed within the system model is greatly reduced.

We see evidence of the effectiveness of this approach by observing that the PIU specification model

(already at the transaction level) is much simpler than the individual port models (at the clock level).

On the other hand, a clock-level PIU model would be enormously complex.

(b) Behavioral decomposition. By partitioning independent behaviors into a set of independent pro-

cesses, a multiplicative growth in modeling complexity for composed systems can be reduced to

linear, or even constant, growth. The effectiveness of this approach within the PIU specification (for

the P Process) is evidenced by the small differences in complexity between the PIU transaction

model and the individual port transaction models.

7.4 Future Work

The obvious next step in our work is to address the PIU port composition problem. While the port

abstractions were developed specifically to accommodate this step, some obstacles remain, and others are

sure to be discovered as this work progresses.

The experience gained on this specification task can help to focus longer-term future work on areas ben-

eficial to real-world specification targets. We believe that future design specifications should make much

greater use of automation than we have applied here. The gate-level specification should be generated auto-

matically from the circuit netlist or simulation model, rather than by hand as we have done. Even an informal

translation would be a significant improvement. The use of bus interconnect models, as described in this
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report,wouldpermitastraightforwardcertificationthatnoinconsistencieswereintroducedintothegate-
leveldescription using such a translation.

The automated generation of clock-level models from their gate-level counterparts should also be pur-

sued. As explained in the Verification Report [Fur93a], clock-level models are beneficial in that they are: (a)

straightforward to verify and (b) effective at speeding up theorem proving at the transaction level. As

explained in this report, clock-level models can be constructed from their gate-level counterparts in a

straightforward manner.
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Appendix A: HOL Overview

HOL is a general theorem proving system developed at the University of Cambridge [Gor88] [Cam86]

that is based on Church's theory of simple types, or higher order logic [Chu40]. Church developed higher

order logic as a foundation for mathematics, but it can be used for describing and reasoning about compu-

tational systems of all kinds. Higher order logic is similar to the more familiar predicate logic, but allows

quantification over predicates and functions, not just variables, allowing more general systems to be

described.

HOL grew out of Robin Milner's LCF theorem prover IGor79] and is similar to other LCF progeny such

as NUPRL [Con86]. Because HOL is the theorem proving environment used in the body of this work, we

describe it in more detail. This description is taken from [Win90a].

HOL's proof style can be tailored to the individual user, but most users find it convenient to work in a

goal-directed fashion. HOL is a tactic-based theorem prover. A tactic breaks a goal into one or more sub-

goals and provides a justification for the goal reduction in the form of an inference rule. Tactics perform

tasks such as induction, rewriting, and case analysis. At the same time, HOL allows forward inference, and

many proofs are a combination of forward and backward proof styles. Any theorem-proving strategy a user

employs in connection with HOL is checked for soundness, eliminating the possibility of incorrect proofs.

HOL provides a metalanguage, ML, for programming and extending the theorem prover. Using ML,

tactics can be put together to form more powerful tactics, new tactics can be written, and theorems can be

combined into new theories for later use. The metalanguage makes the HOL verification system extremely

flexible.

In HOL, all proofs, even tactic-based proofs, are eventually reduced to the application of inference

rules. Most nontrivial proofs require large numbers of inferences. Proofs of large devices such as micropro-

cessors can take many millions of inference steps. In a proof containing millions of steps, what kind of con-

fidence do we have that the proof is correct? One of the most important features of HOL is that it is secure,

meaning that new theorems can only be created in a controlled manner. HOL is based on five primitive axi-

oms and eight primitive inference rules. All high-level inference rules and tactics do their work through

some combination of the primitive inference rules. Because the entire proof can be reduced to one using

only eight primitive inference rules and five primitive axioms, an independent proof-checking program

could check the proof syntactically.

A.I The Language

The object language of HOL is described in this section. We will discuss HOUs terms and types.

Terms. All HOL expressions are made up of terms. There are four kinds of terms in HOL: variables,

constants, function applications, and abstractions (lambda expressions). Variables and constants are denoted

by any sequence of letters, digits, underlines, and primes starting with a letter. Constants are distinguished

in the logic; any identifier that is not a distinguished constant is taken to be a variable. Constants and vari-

ables can have any finite arity, not just 0, and, thus, can represent functions as well.

Function application is denoted by juxtaposition, resulting in a prefix syntax. Thus, a term of the form

"tl t2" is an application of the operator tl to the operand t2. The term's value is the result of applying tl to t2.

An abstraction denotes a function and has the form "_. x. t." An abstraction "_. x. t" has two parts: the

bound variable x and the body of the abstraction t. It represents a function, t, such that "fix) = t." For example,

"_. y. 2.y" denotes a function on numbers that doubles its argument.
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Constantscanbelongto twospecialsyntacticclasses.Constantsof arity 2 can be declared to be infix.

Infix operators are written: "rand1 op rand2" instead of in the usual prefix form: "op rand1 rand2." Table

A. 1 shows several of HOE's built-in infix operators.

Constants can also belong to another special class called binders. A familiar example of a binder is V.

If e is a binder, then the term "e x. t" (where x is a variable) is written as shorthand for the term "e(_ x. t)."

Table A.2 shows several of HOL's built-in binders.

Table A.I: HOL Infix Operators.

Operator Application

tl = t2

Meaning

= tl equals t2

, tl, t2 the pair tl and t2

A tl A t2 tl and t2

v tl v t2 tlort2

tl _ t2 tl implies t2

Table A.2: HOL Binders.

Binder Application Meaning

'v' 'v' x. t for all x, t

3 3 x. t there exists an x such that t

e e x. t choose an x such that t is true

In addition to the infix constants and binders, HOL has a conditional statement that is written

"a => b I c," meaning "ifa then b else c."

Types. HOL is strongly typed to avoid Russell's paradox and others like it. Russell's paradox occurs in

a high order logic when one can define a predicate that leads to a contradiction. Specifically, suppose that

we define P as P(x) = _x(x), where _ denotes negation. P is true when its argument applied to itself is false.

Applying P to itself leads to a contradiction since P(P) = --,P(P) (i.e., true = false). This kind of paradox can

be prevented by typing since, in a typed system, the type of O would never allow it to be applied to itself.

Every term in HOL is typed according to the following recursive rules:

a. Each constant or variable has a fixed type.

b. If x has type tx and t has type 13,the abstraction _Lx. t has the type (ct _ 13).

c. If t has the type (ct _ 13)and u has the type ix, the application t u has the type I_-

Types in HOL are built from type variables and type operators. "Pype variables are denoted by a sequence

of asterisks (*) followed by a (possibly empty) sequence of letters and digits. Thus, *, ***, and *ab2 are all

valid type variables. All type variables are universally quantified implicitly, yielding type polymorphic

expressions.

Type operators construct new types from existing types. Each type operator has a name (denoted by a

sequence of letters and digits beginning with a letter) and an arity. If ¢q ..... a n are types and op is a type
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operatorof arityn, then (cx_..... an) op is a type. Note that type operators are postfix while normal function

application is prefix or infix. A type operator of arity 0 is a type constant.

HOL has several built-in types that are listed in Table A.3. The type operators bool, ind, and fun are

primitive. HOL has a special syntax that allows (*,**)prod to be written as (* # **), (*,**)sum to be written

as (* + **), and (*,**)tun to be written as (* _ **).

Table A.3:

Operator Arity

bool 0

HOL Type Operators.

Meaning

booleans

ind 0 individuals

num 0 natural numbers

(*)list 1 lists of type *

(*,**)prod 2

(*,**)sum 2

(*,**)fun 2

products of * and **

coproducts of * and **

functions from * to **

A.2 The Proof System

HOL is not an automated theorem prover, but is more than simply a proof checker, falling somwhere

between these two extremes. HOL has several features that contribute to its use as a verification environ-

ment:

a. Several built-in theories, including booleans, individuals, numbers, products, sums, lists, and

trees. These theories contain the five axioms that form the basis of higher order logic, as well

as a large number of theorems that follow from them.

b. Rules of inference for higher order logic. These rules contain not only the eight basic rules of

inference from higher order logic, but also a large body of derived inference rules that allow

proofs to proceed using larger steps. The HOL system has rules that implement the standard

introduction and elimination rules for Predicate Calculus as well as specialized rules for rewrit-

ing terms.

c. A collection of tactics. Examples of tactics include: REWRITE_TAe which rewrites a goal

according to some previously proven theorem or definition; GEN_TAe which removes unneces-

sary universally quantified variables from the front of terms; and EQ_TAe which says that to

show two things are equivalent, we should show that they imply each other.

d. A proof management system that keeps track of the state of an interactive proof session.

e. A metalanguage, ML, for programming and extending the theorem prover. Using the metalan-

guage, tactics can be put together to form more powerful tactics, new tactics can be written, and

theorems can be aggregated to form theories for later use. The metalanguage makes the verifi-

cation system extremely flexible.
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